Skip to main content

Advertisement

Log in

Monocyte to HDL ratio: a novel marker of resistant hypertension in CKD patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Inflammation, oxidative stress (OS), atherosclerosis and resistant hypertension (RH) are common features of chronic kidney disease (CKD) leading to a higher risk of death from cardiovascular disease. These effects seem to be modulated by impaired anti-oxidant, anti-inflammatory and reverse cholesterol transport actions of high-density lipoprotein cholesterol (HDL). HDL prevents and reverses monocyte recruitment and activation into the arterial wall and impairs endothelial adhesion molecule expression. Recently, monocyte count to HDL-cholesterol ratio (MHR) has emerged as a potential marker of inflammation and OS, demonstrating to be relevant in CKD. Our research was aimed to assess, for the first time, its reliability in RH.

Methods

We performed a retrospective study on 214 patients with CKD and arterial hypertension who were admitted between January and June 2019 to our Department, 72 of whom were diagnosed with RH.

Results

MHR appeared inversely related to eGFR (ρ = − 0.163; P = 0.0172). MHR was significantly higher among RH patients compared to non-RH ones (12.39 [IQR 10.67–16.05] versus 7.30 [5.49–9.06]; P < 0.0001). Moreover, MHR was significantly different according to the number of anti-hypertensive drugs per patient in the whole study cohort (F = 46.723; P < 0.001) as well as in the non-RH group (F = 14.191; P < 0.001). Moreover, MHR positively correlates with diabetes mellitus (ρ = 0.253; P = 0.0002), white blood cells (ρ = 0.664; P < 0.0001) and C-reactive protein (ρ = 0.563; P < 0.0001).

Conclusions

MHR may be a reliable biomarker due to the connection between HDL and monocytes. Our study suggests that MHR is linked with the use of multiple anti-hypertensive therapy and resistant hypertension in CKD patients, and can be a useful ratio to implement appropriate treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Go AS, Chertow GM, Fan D, McCulloch C, Hsu C (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  Google Scholar 

  2. Untersteller K, Meissl S, Trieb M, Emrich IE, Zawada AM, Holzer M, Knuplez E, Fliser D, Heine GH, Marsche G (2018) HDL functionality and cardiovascular outcome among nondialysis chronic kidney disease patients. J Lipid Res 59(7):1256–1265

    Article  CAS  Google Scholar 

  3. Balla S, Nusair MB, Alpert MA (2013) Risk factors for atherosclerosis in patients with chronic kidney disease: recognition and management. Curr Opin Pharmacol 13(2):192–199

    Article  CAS  Google Scholar 

  4. Vaziri ND, Navab M, Fogelman AM (2010) HDL metabolism and activity in chronic kidney disease. Nat Rev Nephrol 6(5):287–296

    Article  CAS  Google Scholar 

  5. Maeda S, Nakanishi S, Yoneda M, Awaya T, Yamane K, Hirano T, Kohno N (2012) Associations between small dense LDL, HDL subfractions (HDL2, HDL3) and risk of atherosclerosis in Japanese-Americans. J Atheroscler Thromb 19(5):444–452

    Article  CAS  Google Scholar 

  6. Zwijsen RM, de Haan LH, Kuivenhoven JA, Nusselder IC (1991) Modulation of low-density lipoprotein-induced inhibition of intercellular communication by antioxidants and high-density lipoproteins. Food Chem Toxicol 29(9):615–620

    Article  CAS  Google Scholar 

  7. Bandeali S, Farmer J (2012) High-density lipoprotein and atherosclerosis: the role of antioxidant activity. Curr Atheroscler Rep 14(2):101–107

    Article  CAS  Google Scholar 

  8. Mackness B, Mackness M (2012) The antioxidant properties of high-density lipoproteins in atherosclerosis. Panminerva Med 54(2):83–90

    CAS  PubMed  Google Scholar 

  9. Conti G, Caccamo D, Siligato R, Gembillo G, Satta E, Pazzano D, Carucci N, Carella A, Campo GD, Salvo A, Santoro D (2019) Association of higher advanced oxidation protein products (AOPPs) levels in patients with diabetic and hypertensive nephropathy. Med (Kaunas) 55(10):7

    Google Scholar 

  10. Gembillo G, Cernaro V, Salvo A, Siligato R, Laudani A, Buemi M, Santoro D (2019) Role of vitamin D status in diabetic patients with renal disease. Med (Kaunas) 55(6):273

    Google Scholar 

  11. Pugh D, Gallacher PJ, Dhaun N (2020) Management of hypertension in chronic kidney disease [published correction appears in Drugs 2020 Aug 25]. Drugs 79(4):365–379. https://doi.org/10.1007/s40265-019-1064-1

    Article  Google Scholar 

  12. Sun HJ (2019) Current opinion for hypertension in renal fibrosis. Adv Exp Med Biol 1165:37–47. https://doi.org/10.1007/978-981-13-8871-2_3

    Article  CAS  PubMed  Google Scholar 

  13. McCarty MF (2006) Adjuvant strategies for prevention of glomerulosclerosis. Med Hypotheses 67(6):1277–1296

    Article  CAS  Google Scholar 

  14. Klahr S, Morrissey JJ (2000) The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. Kidney Int Suppl 7:S7-14

    Article  Google Scholar 

  15. Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In Vivo 31(1):1–22. https://doi.org/10.21873/invivo.11019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cernaro V, Loddo S, Macaione V et al (2020) RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus. Int Urol Nephrol 52(6):1125–1133. https://doi.org/10.1007/s11255-020-02469-z

    Article  CAS  PubMed  Google Scholar 

  17. Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116(2):288–296

    Article  CAS  Google Scholar 

  18. Klahr S, Morrissey J (2002) Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol 283(5):F861-875

    Article  Google Scholar 

  19. Mennuni S, Rubattu S, Pierelli G, Tocci G, Fofi C, Volpe M (2014) Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens 28:74–79

    Article  CAS  Google Scholar 

  20. Nicholls SJ, Dusting GJ, Cutri B, Bao S, Drummond GR, Rye KA, Barter PJ (2005) Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111:1543–1550

    Article  CAS  Google Scholar 

  21. Tedgui A, Mallat Z (2001) Anti-inflammatory mechanisms in the vascular wall. Circ Res 88:877–887

    Article  CAS  Google Scholar 

  22. Xia P, Vadas MA, Rye KA, Barter PJ, Gamble JR (1999) High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. J Biol Chem 274:33143–33147

    Article  CAS  Google Scholar 

  23. Nicholls SJ, Nelson AJ (2019) HDL and cardiovascular disease. Pathology 51(2):142–147

    Article  CAS  Google Scholar 

  24. Ganjali S, Gotto AM Jr, Ruscica M, Atkin SL, Butler AE, Banach M, Sahebkar A (2018) Monocyte-to-HDL-cholesterol ratio as a prognostic marker in cardiovascular diseases. J Cell Physiol 233(12):9237–9246

    Article  CAS  Google Scholar 

  25. Kuvin JT, Rämet ME, Patel AR, Pandian NG, Mendelsohn ME, Karas RH (2002) A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am Heart J 144(1):165–172

    Article  CAS  Google Scholar 

  26. Linton MRF, Yancey PG, Davies SS et al (2019) The role of lipids and lipoproteins in atherosclerosis. [Updated 2019 Jan 3]. In: Feingold KR, Anawalt B, Boyce A et al (eds) Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. https://www.ncbi.nlm.nih.gov/books/NBK343489/

  27. Canpolat U, Cetin EH, Cetin S, Aydin S, Akboga MK, Yayla C, Turak O, Aras D, Aydogdu S (2016) Association of monocyte-to-HDL cholesterol ratio with slow coronary flow is linked to systemic inflammation. Clin Appl Thromb Hemost 22:476–482. https://doi.org/10.1177/1076029615594002

    Article  CAS  PubMed  Google Scholar 

  28. Viedt C, Orth SR (2002) Monocyte chemoattractant protein-1 (MCP-1) in the kidney: does it more than simply attract monocytes? Nephrol Dial Transplant 17(12):2043–2047. https://doi.org/10.1093/ndt/17.12.2043 (PMID: 12454208)

    Article  CAS  PubMed  Google Scholar 

  29. Williams B, Mancia G, Spiering W et al (2018) 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 39(33):3021–3104

    Article  Google Scholar 

  30. Levey A, Stevens L, Schmid C, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

  31. Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, Welch CL, Wang N, Randolph GJ, Snoeck HW, Tall AR (2010) ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328(5986):1689–1693

    Article  CAS  Google Scholar 

  32. Patel VK, Williams H, Li SCH, Fletcher JP, Medbury HJ (2017) Monocyte inflammatory profile is specific for individuals and associated with altered blood lipid levels. Atherosclerosis 263:15–23

    Article  CAS  Google Scholar 

  33. Karataş MB, Çanga Y, Özcan KS, Ipek G, Güngör B, Onuk T, Durmuş G, Öz A, Karaca M, Bolca O (2016) Monocyte to high-density lipoprotein ratio as a new prognostic marker in patients with STEMI undergoing primary percutaneous coronary intervention. Am J Emerg Med 34(2):240–244

    Article  Google Scholar 

  34. Cetin EHO, Cetin MS, Canpolat U, Aydin S, Topaloglu S, Aras D, Aydogdu S (2015) Monocyte/HDL-cholesterol ratio predicts the definite stent thrombosis after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Biomark Med 9(10):967–977

    Article  CAS  Google Scholar 

  35. You S, Zhong C, Zheng D, Xu J, Zhang X, Liu H, Zhang Y, Shi J, Huang Z, Cao Y, Liu CF (2017) Monocyte to HDL cholesterol ratio is associated with discharge and 3- month outcome in patients with acute intracerebral hemorrhage. J Neurol Sci 372:157–161

    Article  CAS  Google Scholar 

  36. Dogan A, Oylumlu M (2017) Increased monocyte-to-HDL cholesterol ratio is related to cardiac syndrome X. Acta Cardiol 72(5):516–521

    Article  Google Scholar 

  37. Sarov-Blat L, Kiss RS, Haidar B, Kavaslar N, Jaye M, Bertiaux M, Steplewski K, Hurle MR, Sprecher D, McPherson R, Marcel YL (2007) Predominance of a proinflammatory phenotype in monocyte-derived macrophages from subjects with low plasma HDL-cholesterol. Arterioscler Thromb Vasc Biol 27(5):1115–1122

    Article  CAS  Google Scholar 

  38. Selcuk M, Yildirim E, Saylik F (2019) Comparison of monocyte with high density lipoprotein cholesterol ratio in dipper and nondipper hypertensive patients. Biomark Med 13(15):1289–1296

    Article  CAS  Google Scholar 

  39. Aydin E, Ates I, Fettah Arikan M, Yilmaz N, Dede F (2017) The ratio of monocyte frequency to HDL cholesterol level as a predictor of asymptomatic organ damage in patients with primary hypertension. Hypertens Res 40(8):758–764

    Article  CAS  Google Scholar 

  40. Kanbay M, Solak Y, Unal HU, Kurt YG, Gok M, Cetinkaya H, Karaman M, Oguz Y, Eyileten T, Vural A, Covic A, Goldsmith D, Turak O, Yilmaz MI (2014) Monocyte count/HDL cholesterol ratio and cardiovascular events in patients with chronic kidney disease. Int Urol Nephrol 46:1619–1625

    Article  CAS  Google Scholar 

  41. Shi WR, Wang HY, Chen S, Guo XF, Li Z, Sun YX (2019) The impact of monocyte to high-density lipoprotein ratio on reduced renal function: insights from a large population. Biomark Med 13(9):773–783

    Article  CAS  Google Scholar 

  42. Batista MC, Welty FK, Diffenderfer MR et al (2004) (2004) Apolipoprotein A-I, B-100, and B-48 metabolism in subjects with chronic kidney disease, obesity, and the metabolic syndrome. Metabolism 53(10):1255–1261. https://doi.org/10.1016/j.metabol.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  43. Bowe B, Xie Y, Xian H, Li T, Al-Aly Z (2017) Association between monocyte count and risk of incident CKD and progression to ESRD. Clin J Am Soc Nephrol 12(4):603–613

    Article  CAS  Google Scholar 

  44. Cases A, Coll E (2005) Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int Suppl 99:S87-93

    Article  CAS  Google Scholar 

  45. Bae JC, Han JM, Kwon S, Jee JH, Yu TY, Lee MK, Kim JH (2016) LDL-C/apoB and HDL-C/apoA-1 ratios predict incident chronic kidney disease in a large apparently healthy cohort. Atherosclerosis 251:170–176

    Article  CAS  Google Scholar 

  46. Bowe B, Xie Y, Xian H, Balasubramanian S, Al-Aly Z (2016) Low levels of high-density lipoprotein cholesterol increase the risk of incident kidney disease and its progression. Kidney Int 89(4):886–896

    Article  CAS  Google Scholar 

  47. Xu W, Guan H, Gao D, Pan J, Wang Z, Alam M, Lian J, Zhou J (2019) Sex-specific association of monocyte count to high-density lipoprotein ratio with SYNTAX score in patients with suspected stable coronary artery disease. Med (Baltim). 98(41):e17536

    Article  CAS  Google Scholar 

  48. Davis CE, Williams DH, Oganov RG, Tao SC, Rywik SL, Stein Y, Little JA (1996) Sex difference in high density lipoprotein cholesterol in six countries. Am J Epidemiol 143:1100–1106

    Article  CAS  Google Scholar 

  49. Rossouw JE (2002) Hormones, genetic factors, and gender differences in cardiovascular disease. Cardiovasc Res 53:550–557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the nurse staff of the Unit of Nephrology and Dialysis for their help with the blood sampling and the blood pressure measurement of the patients.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, GG, DS, RS; data curation, RS, GG, AS, AR, GS; formal analysis, VC, VCA and GG; investigation, GG, DS; methodology, GG, GC and DS; supervision, GG, GC and DS; writing—original draft, GG, RS, DS and ES; writing—review & editing, GF, RS, GG and VC. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Guido Gembillo or Domenico Santoro.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gembillo, G., Siligato, R., Cernaro, V. et al. Monocyte to HDL ratio: a novel marker of resistant hypertension in CKD patients. Int Urol Nephrol 54, 395–403 (2022). https://doi.org/10.1007/s11255-021-02904-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-02904-9

Keywords

Navigation