Skip to main content

Advertisement

Log in

Mechanism of miR-365 in regulating BDNF-TrkB signal axis of HFD/STZ induced diabetic nephropathy fibrosis and renal function

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Diabetic nephropathy (DN) is one of the most serious complications of diabetes that leads to decline of renal function. Although numerous studies have revealed that microRNAs (miRNAs) play essential roles in the progression of DN, whether miR-365 is involved remains elusive.

Methods

The successful construction of DN model was confirmed by ELSIA, hematoxylin–eosin (HE) and Masson staining assay. The expression of miR-365 was detected through RT-qPCR. The levels of BDNF, p-TrkB, α-smooth muscle actin (SMA), collagen IV (Col.IV), transforming growth factor-β1 (TGF-β1), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were evaluated by western blot, IF or ELISA assays. Luciferase reporter assay was used to detect the interaction between miR-365 and BDNF.

Results

The DN mice model was induced by streptozotocin (STZ). Then miR-365 expression was found to upregulate in tissues of DN rat. Furthermore, elevated expression of miR-365 was found in high glucose (HG)-treated HK-2 cells. Silencing of miR-365 suppressed the accumulation of ECM components and secretion of inflammatory cytokines in HK-2 cells. In addition, it was demonstrated that miR-365 could target BDNF. The protein levels of BDNF and p-TrkB were negatively regulated by miR-365 in HK-2 cells. Moreover, inhibition of miR-365 suppressed the levels of SMA, Col.IV, TGF-β1, TNF-α, and IL-6, indicating the renal fibrosis was inhibited by miR-365 knockdown.

Conclusion

MiR-365 could regulate BDNF-TrkB signal axis in STZ induced DN fibrosis and renal function. The results of the current study might provide a promising biomarker for the treatment of DN in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article, so the code availability is not applicable.

References

  1. Fan Y, Li X, Xiao W, Fu J, Harris RC, Lindenmeyer M, Cohen CD, Guillot N, Baron MH, Wang N, Lee K, He JC, Schlondorff D, Chuang PY (2015) BAMBI elimination enhances alternative TGF-β signaling and glomerular dysfunction in diabetic mice. Diabetes 64:2220–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. An L, Ji D, Hu W, Wang J, Jin X, Qu Y, Zhang N (2020) Interference of Hsa_circ_0003928 alleviates high glucose-induced cell apoptosis and inflammation in HK-2 cells via miR-151-3p/Anxa2. Diabetes Metab Syndr Obes 13:3157–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Helou N, Dwyer A, Shaha M, Zanchi A (2016) Multidisciplinary management of diabetic kidney disease: a systematic review and meta-analysis. JBI Database Syst Rev Implement Rep 14:169–207

    Article  Google Scholar 

  4. Dai H, Liu Q, Liu B (2017) Research progress on mechanism of podocyte depletion in diabetic nephropathy. J Diabetes Res 2017:2615286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Loeffler I, Liebisch M, Wolf G (2012) Collagen VIII influences epithelial phenotypic changes in experimental diabetic nephropathy. Am J Physiol Ren Physiol 303:F733-745

    Article  CAS  Google Scholar 

  6. Tang F, Hao Y, Zhang X, Qin J (2017) Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy. Drug Des Dev Ther 11:2813–2826

    Article  CAS  Google Scholar 

  7. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164–176

    Article  PubMed  Google Scholar 

  8. Guo LM, Ding GF, Xu W, Ge H, Jiang Y, Chen XJ, Lu Y (2018) MiR-135a-5p represses proliferation of HNSCC by targeting HOXA10. Cancer Biol Ther 19:973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoch MJ, Bruno MT, Faustin A, Cruz N, Crandall L, Wisniewski T, Devinsky O, Shepherd TM (2019) 3T MRI whole-brain microscopy discrimination of subcortical anatomy, part 1: brain stem. Am J Neuroradiol 40:401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye Y, Li M, Chen L, Li S, Quan Z (2020) Circ-AK2 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-454-3p/THBS2. Placenta 103:156–163

    Article  PubMed  CAS  Google Scholar 

  11. Yi L, Zhou L, Luo J, Yang Q (2020) Circ-PTK2 promotes the proliferation and suppressed the apoptosis of acute myeloid leukemia cells through targeting miR-330-5p/FOXM1 axis. Blood Cells Mol Dis 86:102506

    Article  PubMed  CAS  Google Scholar 

  12. Liu H, Wang X, Wang ZY, Li L (2020) Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11. J Cell Physiol 235:4520–4529

    Article  CAS  PubMed  Google Scholar 

  13. Li M, Guo Q, Cai H, Wang H, Ma Z, Zhang X (2020) miR-218 regulates diabetic nephropathy via targeting IKK-β and modulating NK-κB-mediated inflammation. J Cell Physiol 235:3362–3371

    Article  CAS  PubMed  Google Scholar 

  14. Ding H, Xu Y, Jiang N (2020) Upregulation of miR-101a suppresses chronic renal fibrosis by regulating KDM3A via blockade of the YAP-TGF-β-Smad signaling pathway. Mol Ther Nucleic Acids 19:1276–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan W, Peng Y, Liang Z, Yang Y, Zhang J (2019) A negative feedback loop of H19/miR-675/EGR1 is involved in diabetic nephropathy by downregulating the expression of the vitamin D receptor. J Cell Physiol 234:17505–17513

    Article  CAS  PubMed  Google Scholar 

  16. Zhu Y, Wen X, Zhao P (2018) MicroRNA-365 inhibits cell growth and promotes apoptosis in melanoma by targeting BCL2 and cyclin D1 (CCND1). Med Sci Monit 24:3679–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang X, Guan Y, Tian S, Wang Y, Sun K, Chen Q (2016) Mechanical and IL-1β responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. Int J Mol Sci 17:436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang J, Zhou T, Liu J, Shangguan J, Liu X, Li Z, Zhou X, Ren Y, Wang C (2020) Application of (1)H-MRS in end-stage renal disease with depression. BMC Nephrol 21:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tsai YC, Kuo MC, Hung WW, Wu LY, Wu PH, Chang WA, Kuo PL, Hsu YL (2020) High glucose induces mesangial cell apoptosis through miR-15b-5p and promotes diabetic nephropathy by extracellular vesicle delivery. Mol Ther 28:963–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho MH (2010) Renal fibrosis. Korean. J Pediatr 53:735–740

    Google Scholar 

  21. Humphreys BD (2018) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326

    Article  CAS  PubMed  Google Scholar 

  22. Zhang M, Guo Y, Fu H, Hu S, Pan J, Wang Y, Cheng J, Song J, Yu Q, Zhang S, Xu JF, Pei G, Xiang X, Yang P, Wang CY (2015) Chop deficiency prevents UUO-induced renal fibrosis by attenuating fibrotic signals originated from Hmgb1/TLR4/NFκB/IL-1β signaling. Cell Death Dis 6:e1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng ZC, Zhu W, Lei L, Liu XQ, Wu YG (2020) Wogonin ameliorates renal inflammation and fibrosis by inhibiting NF-κB and TGF-β1/Smad3 signaling pathways in diabetic nephropathy. Drug Des Dev Ther 14:4135–4148

    Article  CAS  Google Scholar 

  24. Wei TT, Yang LT, Guo F, Tao SB, Cheng L, Huang RS, Ma L, Fu P (2020) Activation of GPR120 in podocytes ameliorates kidney fibrosis and inflammation in diabetic nephropathy. Acta Pharmacol Sin 42:252–263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Xiang E, Han B, Zhang Q, Rao W, Wang Z, Chang C, Zhang Y, Tu C, Li C, Wu D (2020) Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther 11:336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen Y, Liu L, Xing YY, Li Q, Zhao GH, Lu YY, Yang JJ (2020) Down-regulation of miR-365 suppresses cerebral ischemia injury by targeting IGF1R. J Biol Regul Homeost Agents 34:1857–1862

    CAS  PubMed  Google Scholar 

  27. Wang X, Gong S, Pu D, Hu N, Wang Y, Fan P, Zhang J, Lu X (2020) Up-regulation of miR-365 promotes the apoptosis and restrains proliferation of synoviocytes through downregulation of IGF1 and the inactivation of the PI3K/AKT/mTOR pathway in mice with rheumatoid arthritis. Int Immunopharmacol 79:106067

    Article  CAS  PubMed  Google Scholar 

  28. Gao M, Li C, Xu M, Liu Y, Cong M, Liu S (2018) LncRNA MT1DP aggravates cadmium-induced oxidative stress by repressing the function of Nrf2 and is dependent on interaction with miR-365. Adv Sci (Weinh) 5:1800087

    Article  CAS  Google Scholar 

  29. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  30. Xie W, Lu Q, Wang K, Lu J, Gu X, Zhu D, Liu F, Guo Z (2018) miR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin. J Cell Physiol 233:6615–6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Liu L, Zhang H, Shao Y, Chen Z, Feng X, Fang H, Zhao C, Pan J, Zhang H, Zeng C, Cai D (2019) MiR-146b accelerates osteoarthritis progression by targeting alpha-2-macroglobulin. Aging (Albany NY) 11:6014–6028

    Article  CAS  Google Scholar 

  32. Li P, Xu Y, Wang B, Huang J, Li Q (2020) miR-34a-5p and miR-125b-5p attenuate Aβ-induced neurotoxicity through targeting BACE1. J Neurol Sci 413:116793

    Article  CAS  PubMed  Google Scholar 

  33. He M, Wang J, Yin Z, Zhao Y, Hou H, Fan J, Li H, Wen Z, Tang J, Wang Y, Wang DW, Chen C (2019) MiR-320a induces diabetic nephropathy via inhibiting MafB. Aging (Albany NY) 11:3055–3079

    Article  CAS  PubMed Central  Google Scholar 

  34. Xu D, Gao Y, Hu N, Wu L, Chen Q (2017) miR-365 ameliorates dexamethasone-induced suppression of osteogenesis in MC3T3-E1 Cells by targeting HDAC4. Int J Mol Sci 18:977

    Article  PubMed Central  CAS  Google Scholar 

  35. Lin B, Feng DG, Wang F, Wang JX, Xu CG, Zhao H, Cheng ZY (2016) MiR-365 participates in coronary atherosclerosis through regulating IL-6. Eur Rev Med Pharmacol Sci 20:5186–5192

    CAS  PubMed  Google Scholar 

  36. Li M, Liu L, Zang W, Wang Y, Du Y, Chen X, Li P, Li J, Zhao G (2015) miR-365 overexpression promotes cell proliferation and invasion by targeting ADAMTS-1 in breast cancer. Int J Oncol 47:296–302

    Article  CAS  PubMed  Google Scholar 

  37. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258

    CAS  PubMed  Google Scholar 

  38. Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25:1386–1403

    Article  CAS  PubMed  Google Scholar 

  39. Kallies G, Rapp MA, Fydrich T, Fehm L, Tschorn M, Terán C, Schwefel M, Pietrek A, Henze R, Hellweg R, Ströhle A, Heinzel S, Heissel A (2019) Serum brain-derived neurotrophic factor (BDNF) at rest and after acute aerobic exercise in major depressive disorder. Psychoneuroendocrinology 102:212–215

    Article  CAS  PubMed  Google Scholar 

  40. Francis K, Dougali A, Sideri K, Kroupis C, Vasdekis V, Dima K, Douzenis A (2018) Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up. Acta Psychiatr Scand 137:433–441

    Article  CAS  PubMed  Google Scholar 

  41. Heitz U, Papmeyer M, Studerus E, Egloff L, Ittig S, Andreou C, Vogel T, Borgwardt S, Graf M, Eckert A, Riecher-Rössler A (2019) Plasma and serum brain-derived neurotrophic factor (BDNF) levels and their association with neurocognition in at-risk mental state, first episode psychosis and chronic schizophrenia patients. World J Biol Psychiatry 20:545–554

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Zhejiang Health Science and Technology Project (2021KY1130).

Author information

Authors and Affiliations

Authors

Contributions

PZ: methodology, software, validation, and data curation. XL: methodology, software, validation, and writing-original draft. YL: software, validation, and methodology. JZ: software, methodology, and writing—review and editing. YS: conceptualization, methodology, investigation, and supervision. JH: conceptualization, methodology, investigation, and supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yu Sun or Jianli Hong.

Ethics declarations

Conflict of interest

There are no conflicts of interest concerning this article.

Ethics approval

The experiments involved in animals were performed according to the National Institutes of Health guide for the care and use of Laboratory animals.

Consent for publication

All authors agree to publish this article to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Li, X., Li, Y. et al. Mechanism of miR-365 in regulating BDNF-TrkB signal axis of HFD/STZ induced diabetic nephropathy fibrosis and renal function. Int Urol Nephrol 53, 2177–2187 (2021). https://doi.org/10.1007/s11255-021-02853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-02853-3

Keywords

Navigation