Skip to main content

Advertisement

Log in

Effectiveness of fibroblast growth factor 23 lowering modalities in chronic kidney disease: a systematic review and meta-analysis

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Introduction

The heightened fibroblast growth factor 23 (FGF23) level in patients with chronic kidney disease (CKD) is associated with increased cardiovascular disease and mortality. We performed a systematic review and meta-analysis to synthesize the available strategies to reduce FGF23 in CKD patients.

Methods

We conducted a meta-analysis by searching the databases of MEDLINE, Scopus, and Cochrane Central Register of Controlled Trials for randomized controlled trials (RCTs) and single-arm studies that examined the effects of dietary phosphate restriction, phosphate binders, iron supplements, calcimimetics, parathyroidectomy, dialysis techniques, and the outcome of preservation of residual renal function (RRF) on FGF23 levels in CKD patients. Random-effects model meta-analyses were used to compute changes in the outcome of interests.

Results

A total of 41 articles (7590 patients), comprising 36 RCTs, 5 prospective studies were included in this meta-analysis. Dietary phosphate restriction less than 800 mg per day yielded insignificant effect on FGF23 reduction. Interestingly sevelamer, lanthanum, iron-based phosphate binders, and iron supplement significantly lowered FGF23 levels. In CKD patients with secondary hyperparathyroidism, calcimimetics prescription could significantly reduce FGF23 levels, while surgical parathyroidectomy had no significant effect. In dialysis patients, preservation of RRF and hemoperfusion as well as hemodiafiltration provided a significant decrease in FGF23 levels.

Conclusions

The present meta-analysis demonstrated that non-calcium-based phosphate binders including sevelamer, lanthanum, and iron-based phosphate binders, iron supplements, calcimimetics, hemoperfusion, and preservation of RRF could effectively reduce FGF23 in CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rodelo-Haad C, Santamaria R, Munoz-Castaneda JR, Pendon-Ruiz de Mier MV, Martin-Malo A, Rodriguez M (2019) FGF23, biomarker or target? Toxins (Basel) 11(3):175

    Article  CAS  Google Scholar 

  2. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774

    Article  CAS  PubMed  Google Scholar 

  3. Vervloet M (2019) Renal and extrarenal effects of fibroblast growth factor 23. Nat Rev Nephrol 15(2):109–120

    Article  CAS  PubMed  Google Scholar 

  4. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19(3):429–435

    Article  CAS  PubMed  Google Scholar 

  5. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H et al (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79(12):1370–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haring R, Enserro D, Xanthakis V, Mitchell GF, Benjamin EJ, Hamburg NM et al (2016) Plasma fibroblast growth factor 23: clinical correlates and association with cardiovascular disease and mortality in the Framingham heart study. J Am Heart Assoc 5(7):e003486

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bouma-de Krijger A, de Roij van Zuijdewijn CLM, Nubé MJ, Grooteman MPC, Vervloet MG (2020) Change in FGF23 concentration over time and its association with all-cause mortality in patients treated with haemodialysis or haemodiafiltration. Clin Kidney J 14:891–897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hsu HJ, Wu MS (2009) Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am J Med Sci 337(2):116–122

    Article  PubMed  Google Scholar 

  9. Unsal A, Kose Budak S, Koc Y, Basturk T, Sakaci T, Ahbap E et al (2012) Relationship of fibroblast growth factor 23 with left ventricle mass index and coronary calcificaton in chronic renal disease. Kidney Blood Press Res 36(1):55–64

    Article  CAS  PubMed  Google Scholar 

  10. Mirza MA, Larsson A, Lind L, Larsson TE (2009) Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205(2):385–390

    Article  CAS  PubMed  Google Scholar 

  11. Munoz Mendoza J, Isakova T, Cai X, Bayes LY, Faul C, Scialla JJ et al (2017) Inflammation and elevated levels of fibroblast growth factor 23 are independent risk factors for death in chronic kidney disease. Kidney Int 91(3):711–719

    Article  CAS  PubMed  Google Scholar 

  12. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10):e1-34

    Article  PubMed  Google Scholar 

  13. Clark HD, Wells GA, Huet C, McAlister FA, Salmi LR, Fergusson D et al (1999) Assessing the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials 20(5):448–452

    Article  CAS  PubMed  Google Scholar 

  14. Stang A (2010) Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605

    Article  PubMed  Google Scholar 

  15. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J (2006) Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 11(2):193–206

    Article  PubMed  Google Scholar 

  16. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Isakova T, Gutierrez OM, Smith K, Epstein M, Keating LK, Juppner H et al (2011) Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol Dial Transplant 26(2):584–591

    Article  CAS  PubMed  Google Scholar 

  18. Isakova T, Barchi-Chung A, Enfield G, Smith K, Vargas G, Houston J et al (2013) Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD. Clin J Am Soc Nephrol 8(6):1009–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sigrist M, Tang M, Beaulieu M, Espino-Hernandez G, Er L, Djurdjev O et al (2013) Responsiveness of FGF-23 and mineral metabolism to altered dietary phosphate intake in chronic kidney disease (CKD): results of a randomized trial. Nephrol Dial Transplant 28(1):161–169

    Article  CAS  PubMed  Google Scholar 

  20. Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L et al (2010) Early control of PTH and FGF23 in normophosphatemic ckd patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol 5(2):286–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cancela AL, Oliveira RB, Graciolli FG, dos Reis LM, Barreto F, Barreto DV et al (2011) Fibroblast growth factor 23 in hemodialysis patients: effects of phosphate binder, calcitriol and calcium concentration in the dialysate. Nephron Clin Pract 117(1):c74–c82

    Article  CAS  PubMed  Google Scholar 

  22. Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M, Spiegel DM et al (2012) Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 23(8):1407–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yilmaz MI, Sonmez A, Saglam M, Yaman H, Kilic S, Eyileten T et al (2012) Comparison of calcium acetate and sevelamer on vascular function and fibroblast growth factor 23 in CKD patients: a randomized clinical trial. Am J Kidney Dis 59(2):177–185

    Article  CAS  PubMed  Google Scholar 

  24. Chue CD, Townend JN, Moody WE, Zehnder D, Wall NA, Harper L et al (2013) Cardiovascular effects of sevelamer in stage 3 CKD. J Am Soc Nephrol 24(5):842–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Covic A, Passlick-Deetjen J, Kroczak M, Buschges-Seraphin B, Ghenu A, Ponce P et al (2013) A comparison of calcium acetate/magnesium carbonate and sevelamer–hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study. Nephrol Dial Transplant 28(9):2383–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin HH, Liou HH, Wu MS, Lin CY, Huang CC (2014) Long-term sevelamer treatment lowers serum fibroblast growth factor 23 accompanied with increasing serum K lotho levels in chronic haemodialysis patients. Nephrology (Carlton) 19(11):672–678

    Article  CAS  Google Scholar 

  27. Akizawa T, Origasa H, Kameoka C, Tsukada J, Kuroishi K, Yamaguchi Y (2016) Bixalomer in hyperphosphatemic patients with chronic kidney disease not on dialysis: phase 3 randomized trial. Ther Apher Dial 20(6):588–597

    Article  CAS  PubMed  Google Scholar 

  28. Liabeuf S, Ryckelynck JP, El Esper N, Urena P, Combe C, Dussol B et al (2017) Randomized clinical trial of sevelamer carbonate on serum K lotho and fibroblast growth factor 23 in CKD. Clin J Am Soc Nephrol 12(12):1930–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruggiero B, Trillini M, Tartaglione L, Rotondi S, Perticucci E, Tripepi R et al (2019) Effects of sevelamer carbonate in patients with CKD and proteinuria: the answer randomized trial. Am J Kidney Dis 74(3):338–350

    Article  CAS  PubMed  Google Scholar 

  30. Toida T, Fukudome K, Fujimoto S, Yamada K, Sato Y, Chiyotanda S et al (2012) Effect of lanthanum carbonate vs. calcium carbonate on serum calcium in hemodialysis patients: a crossover study. Clin Nephrol 78(3):216–223

    Article  CAS  PubMed  Google Scholar 

  31. Navarro-González JF, Donate-Correa J, Muros M, García-García P, Getino MA, García-Pérez J et al (2013) Lanthanum carbonate modulates inflammatory profile in hemodialysis patients: relationship with fibroblast growth factor-23. Eur J Inflamm 11(1):75–86

    Article  Google Scholar 

  32. Seifert ME, de las Fuentes L, Rothstein M, Dietzen DJ, Bierhals AJ, Cheng SC et al (2013) Effects of phosphate binder therapy on vascular stiffness in early-stage chronic kidney disease. Am J Nephrol 38(2):158–167

    Article  CAS  PubMed  Google Scholar 

  33. Soriano S, Ojeda R, Rodriguez M, Almaden Y, Rodriguez M, Martin-Malo A et al (2013) The effect of phosphate binders, calcium and lanthanum carbonate on FGF23 levels in chronic kidney disease patients. Clin Nephrol 80(1):17–22

    Article  CAS  PubMed  Google Scholar 

  34. Urena-Torres P, Prie D, Keddad K, Preston P, Wilde P, Wan H et al (2014) Changes in fibroblast growth factor 23 levels in normophosphatemic patients with chronic kidney disease stage 3 treated with lanthanum carbonate: results of the prefect study, a phase 2a, double blind, randomized, placebo-controlled trial. BMC Nephrol 15:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chang YM, Tsai SC, Shiao CC, Liou HH, Yang CL, Tung NY et al (2017) Effects of lanthanum carbonate and calcium carbonate on fibroblast growth factor 23 and hepcidin levels in chronic hemodialysis patients. Clin Exp Nephrol 21(5):908–916

    Article  CAS  PubMed  Google Scholar 

  36. Ix JH, Isakova T, Larive B, Raphael KL, Raj DS, Cheung AK et al (2019) Effects of nicotinamide and lanthanum carbonate on serum phosphate and fibroblast growth factor-23 in CKD: the combine trial. J Am Soc Nephrol 30(6):1096–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yokoyama K, Hirakata H, Akiba T, Fukagawa M, Nakayama M, Sawada K et al (2014) Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD. Clin J Am Soc Nephrol 9(3):543–552

    Article  PubMed  PubMed Central  Google Scholar 

  38. Block GA, Fishbane S, Rodriguez M, Smits G, Shemesh S, Pergola PE et al (2015) A 12-week, double-blind, placebo-controlled trial of ferric citrate for the treatment of iron deficiency anemia and reduction of serum phosphate in patients with CKD stages 3–5. Am J Kidney Dis 65(5):728–736

    Article  CAS  PubMed  Google Scholar 

  39. Roberts MA, Huang L, Lee D, MacGinley R, Troster SM, Kent AB et al (2016) Effects of intravenous iron on fibroblast growth factor 23 (FGF23) in haemodialysis patients: a randomized controlled trial. BMC Nephrol 17(1):177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Maruyama N, Otsuki T, Yoshida Y, Nagura C, Kitai M, Shibahara N et al (2018) Ferric citrate decreases fibroblast growth factor 23 and improves erythropoietin responsiveness in hemodialysis patients. Am J Nephrol 47(6):406–414

    Article  CAS  PubMed  Google Scholar 

  41. Otsuki T, Utsunomiya K, Moriuchi M, Horikoshi S, Okamura M, Suzuki H et al (2018) Effect of sucroferric oxyhydroxide on fibroblast growth factor 23 levels in hemodialysis patients. Nephron 140(3):161–168

    Article  CAS  PubMed  Google Scholar 

  42. Block GA, Block MS, Smits G, Mehta R, Isakova T, Wolf M et al (2019) A pilot randomized trial of ferric citrate coordination complex for the treatment of advanced CKD. J Am Soc Nephrol 30(8):1495–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ketteler M, Sprague SM, Covic AC, Rastogi A, Spinowitz B, Rakov V et al (2019) Effects of sucroferric oxyhydroxide and sevelamer carbonate on chronic kidney disease-mineral bone disorder parameters in dialysis patients. Nephrol Dial Transplant 34(7):1163–1170

    Article  CAS  PubMed  Google Scholar 

  44. Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R et al (2015) Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation 132(1):27–39

    Article  CAS  PubMed  Google Scholar 

  45. Sprague SM, Wetmore JB, Gurevich K, Da Roza G, Buerkert J, Reiner M et al (2015) Effect of cinacalcet and vitamin D analogs on fibroblast growth factor-23 during the treatment of secondary hyperparathyroidism. Clin J Am Soc Nephrol 10(6):1021–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fukagawa M, Yokoyama K, Shigematsu T, Akiba T, Fujii A, Kuramoto T et al (2017) A phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of etelcalcetide (ONO-5163/AMG 416), a novel intravenous calcimimetic, for secondary hyperparathyroidism in Japanese haemodialysis patients. Nephrol Dial Transplant 32(10):1723–1730

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolf M, Block GA, Chertow GM, Cooper K, Fouqueray B, Moe SM et al (2020) Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis. Clin Kidney J 13(1):75–84

    Article  CAS  PubMed  Google Scholar 

  48. Akizawa T, Shimazaki R, Fukagawa M (2018) Phase 2b study of evocalcet (khk7580), a novel calcimimetic, in Japanese patients with secondary hyperparathyroidism undergoing hemodialysis: a randomized, double-blind, placebo-controlled, dose-finding study. PLoS ONE 13(10):e0204896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Takahashi H, Komaba H, Takahashi Y, Sawada K, Tatsumi R, Kanai G et al (2014) Impact of parathyroidectomy on serum FGF23 and soluble K lotho in hemodialysis patients with severe secondary hyperparathyroidism. J Clin Endocrinol Metab 99(4):E652–E658

    Article  CAS  PubMed  Google Scholar 

  50. Liao SC, Moi SH, Chou FF, Yang CH, Chen JB (2016) Changes in serum concentrations of fibroblast growth factor 23 and soluble K lotho in hemodialysis patients after total parathyroidectomy. Biomed Res Int 2016:6453803

    PubMed  PubMed Central  Google Scholar 

  51. Miao LY, Zhu B, He XZ, Liu JF, Jin LN, Li XR et al (2014) Effects of three blood purification methods on serum fibroblast growth factor-23 clearance in patients with hyperphosphatemia undergoing maintenance hemodialysis. Exp Ther Med 7(4):947–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fu X, Cui QQ, Ning JP, Fu SS, Liao XH (2015) High-flux hemodialysis benefits hemodialysis patients by reducing serum FGF-23 levels and reducing vascular calcification. Med Sci Monit 21:3467–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schneider A, Schneider MP, Krieter DH, Genser B, Scharnagl H, Stojakovic T et al (2015) Effect of high-flux dialysis on circulating FGF-23 levels in end-stage renal disease patients: results from a randomized trial. PLoS ONE 10(5):e0128079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhang Z, Chen J, Sun Z, Chen C, Xue J, Liu X et al (2015) Effects of high-flux hemodialysis on FGF-23 and micro-inflammatory state in end-stage renal diseases patients. Zhonghua Yi Xue Za Zhi 95(26):2074–2078

    CAS  PubMed  Google Scholar 

  55. Zulong Z, Rui Y, Bol L, Ye C (2019) Effect of high-flux hemodialysis on FGF23 level, calcium–phosphate metabolism disorder, arteriosclerosis, and cardiac function in patients with end-stage renal disease. Acta Med Mediterr 35(4):2007–2011

    Google Scholar 

  56. Viaene L, Bammens B, Meijers BK, Vanrenterghem Y, Vanderschueren D, Evenepoel P (2012) Residual renal function is an independent determinant of serum FGF-23 levels in dialysis patients. Nephrol Dial Transplant 27(5):2017–2022

    Article  CAS  PubMed  Google Scholar 

  57. Rhee H, Yang JY, Jung WJ, Shin MJ, Yang BY, Song SH et al (2014) Significance of residual renal function for phosphate control in chronic hemodialysis patients. Kidney Res Clin Pract 33(1):58–64

    Article  PubMed  PubMed Central  Google Scholar 

  58. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA (2005) Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146(12):5358–5364

    Article  CAS  PubMed  Google Scholar 

  59. Vervloet MG, van Ittersum FJ, Buttler RM, Heijboer AC, Blankenstein MA, ter Wee PM (2011) Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin J Am Soc Nephrol 6(2):383–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tsai WC, Wu HY, Peng YS, Hsu SP, Chiu YL, Chen HY et al (2018) Effects of lower versus higher phosphate diets on fibroblast growth factor-23 levels in patients with chronic kidney disease: a systematic review and meta-analysis. Nephrol Dial Transplant 33(11):1977–1983

    Article  CAS  PubMed  Google Scholar 

  61. Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL et al (2011) Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol 6(2):257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Di Iorio B, Di Micco L, Torraca S, Sirico ML, Russo L, Pota A et al (2012) Acute effects of very-low-protein diet on FGF23 levels: a randomized study. Clin J Am Soc Nephrol 7(4):581–587

    Article  PubMed  CAS  Google Scholar 

  63. Sabatino A, Cuppari L, Stenvinkel P, Lindholm B, Avesani CM (2020) Sarcopenia in chronic kidney disease: what have we learned so far? J Nephrol

  64. Lin YF, Chien CT, Kan WC, Chen YM, Chu TS, Hung KY et al (2011) Pleiotropic effects of sevelamer beyond phosphate binding in end-stage renal disease patients: a randomized, open-label, parallel-group study. Clin Drug Investig 31(4):257–267

    Article  PubMed  Google Scholar 

  65. Riccio E, Sabbatini M, Bruzzese D, Grumetto L, Marchetiello C, Amicone M et al (2018) Plasma p-cresol lowering effect of sevelamer in non-dialysis CKD patients: evidence from a randomized controlled trial. Clin Exp Nephrol 22(3):529–538

    Article  CAS  PubMed  Google Scholar 

  66. David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V et al (2016) Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 89(1):135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Isakova T, Ix JH, Sprague SM, Raphael KL, Fried L, Gassman JJ et al (2015) Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J Am Soc Nephrol 26(10):2328–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharaf El Din UAA, Salem MM, Abdulazim DO (2017) Is fibroblast growth factor 23 the leading cause of increased mortality among chronic kidney disease patients? A narrative review. J Adv Res 8(3):271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Urena P, Legoupil N, de Vernejoul MC (2005) Calcimimetics, mechanisms of action and therapeutic applications. Press Med 34(15):1095–1100

    Article  CAS  Google Scholar 

  70. Smajilovic S, Yano S, Jabbari R, Tfelt-Hansen J (2011) The calcium-sensing receptor and calcimimetics in blood pressure modulation. Br J Pharmacol 164(3):884–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Greeviroj P, Kitrungphaiboon T, Katavetin P, Praditpornsilpa K, Eiam-Ong S, Jaber BL et al (2018) Cinacalcet for treatment of chronic kidney disease-mineral and bone disorder: a meta-analysis of randomized controlled trials. Nephron 139(3):197–210

    Article  CAS  PubMed  Google Scholar 

  72. Isakova T, Xie H, Barchi-Chung A, Vargas G, Sowden N, Houston J et al (2011) Fibroblast growth factor 23 in patients undergoing peritoneal dialysis. Clin J Am Soc Nephrol 6(11):2688–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: KT, TW, and PS; data collection: KT, TW, JP, and PS; analysis and interpretation of the data: KT, PS, SE, and KP; writing: KT, PS, SE, and KP; figure: KT and PS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paweena Susantitaphong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

For this type of study, ethical approval is not required.

Informed consent

For this type of study, formal consent is not required.

Human/animal rights statement

This study did not directly involve with human participants or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takkavatakarn, K., Wuttiputhanun, T., Phannajit, J. et al. Effectiveness of fibroblast growth factor 23 lowering modalities in chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol 54, 309–321 (2022). https://doi.org/10.1007/s11255-021-02848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-02848-0

Keywords

Navigation