Skip to main content

Advertisement

Log in

Renoprotective effect of platelet-rich plasma in obstructive uropathy

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of platelet-rich plasma (PRP) in reducing renal injury in ureteral obstruction.

Methods

Twenty-four Wistar Albino rats were randomized and divided into four groups as the donor (n = 6), sham (n = 6), saline (n = 6), and PRP (n = 6). Blood was obtained from the donor group by cardiac puncture and PRP was prepared. 2 cc blood was sampled from other groups to measure blood-urea nitrogen and creatinine levels. Baseline renal scintigraphy was performed. An abdominal midline incision was made and the left ureter was exposed in the sham group. Saline infusion was given to the kidneys of the saline group after left ureteral obstruction, while PRP was given to the PRP group. On postoperative Day 7, control biochemical and scintigraphic evaluations were performed and left nephrectomies were done. Left kidneys were evaluated histopathologically.

Results

DMSA measurements in the sham group were found to be significantly higher than the saline and PRP groups (p = 0.001 and p = 0.024, respectively). There were no significant differences between the saline and PRP groups (p = 0.525 and p > 0.05, respectively). Histopathologically, no significant difference was observed between the saline and PRP groups (p = 0.320), while the scores of the sham group were significantly higher than the saline and PRP groups (p = 0.02 and p = 0.001, respectively).

Conclusion

Our study results suggest that PRP may be effective in preventing ureteral obstruction-induced renal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ucero AC, Benito-Martin A, Izquierdo MC, Sanchez-Nino MD, Sanz AB, Ramos AM, Berzal S, Ruiz-Ortega M, Egido J, Ortiz A (2014) Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol 46(4):765–776. https://doi.org/10.1007/s11255-013-0520-1

    Article  PubMed  Google Scholar 

  2. Lucarelli G, Mancini V, Galleggiante V, Rutigliano M, Vavallo A, Battaglia M, Ditonno P (2014) Emerging urinary markers of renal injury in obstructive nephropathy. Biomed Res Int 2014:303298. https://doi.org/10.1155/2014/303298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moody TE, Vaughn ED Jr, Gillenwater JY (1975) Relationship between renal blood flow and ureteral pressure during 18 hours of total unilateral uretheral occlusion. Implications for changing sites of increased renal resistance. Invest Urol 13(3):246–251

    CAS  PubMed  Google Scholar 

  4. Miyajima A, Chen J, Poppas DP, Vaughan ED Jr, Felsen D (2001) Role of nitric oxide in renal tubular apoptosis of unilateral ureteral obstruction. Kidney Int 59(4):1290–1303. https://doi.org/10.1046/j.1523-1755.2001.0590041290.x

    Article  CAS  PubMed  Google Scholar 

  5. Tokuc E, Urkmez A, Can U, Orak R, Gumrukcu G, Erel O, Kutluhan MA, Sertkaya Z, Ozturk MI (2020) Evaluation of dynamic thiol-disulphide homeostasis in obstructive uropathy. Int Urol Nephrol 52(5):821–828. https://doi.org/10.1007/s11255-020-02377-2

    Article  CAS  PubMed  Google Scholar 

  6. Arendshorst WJ, Gottschalk CW (1985) Glomerular ultrafiltration dynamics: historical perspective. Am J Physiol 248(2 Pt 2):F163-174. https://doi.org/10.1152/ajprenal.1985.248.2.F163

    Article  CAS  PubMed  Google Scholar 

  7. Martinez-Klimova E, Aparicio-Trejo OE, Tapia E, Pedraza-Chaverri J (2019) Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules 9(4):10. https://doi.org/10.3390/biom9040141

    Article  CAS  Google Scholar 

  8. Manucha W, Carrizo L, Alvarez S, Valles P, Oliveros L (2005) Effect of losartan pretreatment on kidney lipid content after unilateral obstruction in rats. Cell Mol Biol (Noisy-le-grand) 51(6):539–545

    CAS  Google Scholar 

  9. Klahr S, Morrissey J (2004) L-arginine as a therapeutic tool in kidney disease. Semin Nephrol 24(4):389–394. https://doi.org/10.1016/j.semnephrol.2004.04.010

    Article  CAS  PubMed  Google Scholar 

  10. Kaeidi A, Sahamsizadeh A, Allahtavakoli M, Fatemi I, Rahmani M, Hakimizadeh E, Hassanshahi J (2020) The effect of oleuropein on unilateral ureteral obstruction induced-kidney injury in rats: the role of oxidative stress, inflammation and apoptosis. Mol Biol Rep 47(2):1371–1379. https://doi.org/10.1007/s11033-019-05237-0

    Article  CAS  PubMed  Google Scholar 

  11. Mussano F, Genova T, Munaron L, Petrillo S, Erovigni F, Carossa S (2016) Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets 27(5):467–471. https://doi.org/10.3109/09537104.2016.1143922

    Article  CAS  PubMed  Google Scholar 

  12. Eppley BL, Woodell JE, Higgins J (2004) Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg 114(6):1502–1508. https://doi.org/10.1097/01.prs.0000138251.07040.51

    Article  Google Scholar 

  13. Moghadam A, Khozani TT, Mafi A, Namavar MR, Dehghani F (2017) Effects of platelet-rich plasma on kidney regeneration in gentamicin-induced nephrotoxicity. J Korean Med Sci 32(1):13–21. https://doi.org/10.3346/jkms.2017.32.1.13

    Article  CAS  PubMed  Google Scholar 

  14. Kutluhan MA, Ozsoy E, Sahin A, Urkmez A, Topaktas R, Toprak T, Gumrukcu G, Verit A (2020) Effects of platelet-rich plasma on spermatogenesis and hormone production in an experimental testicular torsion model. Andrology. https://doi.org/10.1111/andr.12895

    Article  PubMed  Google Scholar 

  15. Cai X-R, Juan Yu, Zhou Q-C, Bin Du, Feng Y-Z, Liu X-L (2016) Use of intravoxel incoherent motion MRI to assess renal fibrosis in a rat model of unilateral ureteral obstruction. J Magn Reson Imaging 44(3):698–706. https://doi.org/10.1002/jmri.25172 (Epub 2016 Feb 4)

    Article  PubMed  Google Scholar 

  16. Salem N, Helmi N, Assaf N (2018) Renoprotective effect of platelet-rich plasma on cisplatin-induced nephrotoxicity in rats. Oxid Med Cell Longev 2:9658230. https://doi.org/10.1155/2018/9658230

    Article  CAS  Google Scholar 

  17. Martín-Solé O, Rodó J, García-Aparicio L, Blanch J, Cusí V, Albert A (2016) Effects of platelet-rich plasma (PRP) on a model of renal ischemia-reperfusion in rats. PLoS ONE 11(8):e0160703. https://doi.org/10.1371/journal.pone.0160703.eCollection2016

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khalid U, Pino-Chavez G, Nesargikar P, Jenkins RH, Bowen T, Fraser DJ, Chavez R (2016) Kidney ischaemia reperfusion injury in the rat: the EGTI scoring system as a valid and reliable tool for histological assessment. J Histol Histopathol 3(1):1. https://doi.org/10.7243/2055-091X-3-1

    Article  Google Scholar 

  19. Sharma M, Doley P, Das HJ (2018) Etiological profile of chronic kidney disease: a single-center retrospective hospital-based study. Saudi J Kidney Dis Transpl 29(2):409–413. https://doi.org/10.4103/1319-2442.229297

    Article  PubMed  Google Scholar 

  20. Chevalier RL, Cachat F (2001) Role of angiotensin II in chronic ureteral obstruction. Contrib Nephrol 135:250–260. https://doi.org/10.1159/000060171

    Article  CAS  Google Scholar 

  21. Francois H, Chatziantoniou C (2018) Renal fibrosis: recent translational aspects. Matrix Biol 68:318–332. https://doi.org/10.1016/j.matbio.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  22. Naruse T, Yuzawa Y, Akahori T, Mizuno M, Maruyama S, Kannagi R, Hotta N, Matsuo S (2002) P-selectin-dependent macrophage migration into the tubulointerstitium in unilateral ureteral obstruction. Kidney Int 62(1):94–105. https://doi.org/10.1046/j.1523-1755.2002.00419.x

    Article  CAS  PubMed  Google Scholar 

  23. Inguaggiato P, Gonzalez-Michaca L, Croatt AJ, Haggard JJ, Alam J, Nath KA (2001) Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis. Kidney Int 60(6):2181–2191. https://doi.org/10.1046/j.1523-1755.2001.00046.x

    Article  CAS  PubMed  Google Scholar 

  24. Tashiro K, Tamada S, Kuwabara N, Komiya T, Takekida K, Asai T, Iwao H, Sugimura K, Matsumura Y, Takaoka M, Nakatani T, Miura K (2003) Attenuation of renal fibrosis by proteasome inhibition in rat obstructive nephropathy: possible role of nuclear factor kappaB. Int J Mol Med 12(4):587–592

    CAS  PubMed  Google Scholar 

  25. Lenda DM, Kikawada E, Stanley ER, Kelley VR (2003) Reduced macrophage recruitment, proliferation, and activation in colony-stimulating factor-1-deficient mice results in decreased tubular apoptosis during renal inflammation. J Immunol 170(6):3254–3262. https://doi.org/10.4049/jimmunol.170.6.3254

    Article  CAS  PubMed  Google Scholar 

  26. Ito K, Chen J, Khodadadian JJ, Seshan SV, Eaton C, Zhao X, Vaughan ED Jr, Lipkowitz M, Poppas DP, Felsen D (2004) Liposome-mediated transfer of nitric oxide synthase gene improves renal function in ureteral obstruction in rats. Kidney Int 66(4):1365–1375. https://doi.org/10.1111/j.1523-1755.2004.00899.x

    Article  CAS  PubMed  Google Scholar 

  27. Sundman EA, Cole BJ, Karas V, Della Valle C, Tetreault MW, Mohammed HO, Fortier LA (2014) The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med 42(1):35–41. https://doi.org/10.1177/0363546513507766

    Article  PubMed  Google Scholar 

  28. Osterman C, McCarthy MB, Cote MP, Beitzel K, Bradley J, Polkowski G, Mazzocca AD (2015) Platelet-rich plasma increases anti-inflammatory markers in a human coculture model for osteoarthritis. Am J Sports Med 43(6):1474–1484. https://doi.org/10.1177/0363546515570463

    Article  PubMed  Google Scholar 

  29. Hu Z, Qu S, Zhang J, Cao X, Wang P, Huang S, Shi F, Dong Y, Wu J, Tang B, Zhu J (2019) Efficacy and safety of platelet-rich plasma for patients with diabetic ulcers: a systematic review and meta-analysis. Adv Wound Care (New Rochelle) 8(7):298–308. https://doi.org/10.1089/wound.2018.0842

    Article  CAS  Google Scholar 

  30. Lacci KM, Dardik A (2010) Platelet-rich plasma: support for its use in wound healing. Yale J Biol Med 83(1):1–9

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Özsoy.

Ethics declarations

Conflict of interest

No competing financial interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özsoy, E., Kutluhan, M.A., Akyüz, M. et al. Renoprotective effect of platelet-rich plasma in obstructive uropathy. Int Urol Nephrol 53, 1073–1079 (2021). https://doi.org/10.1007/s11255-021-02782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-02782-1

Keywords

Navigation