Skip to main content

Advances in the role and mechanism of zonulin pathway in kidney diseases

Abstract

The intestinal barrier is the first line of defense against foreign antigens. Tight junctions play an important role in maintaining the function of the intestinal wall. Zonulin is the only physiological protein discovered in recent years that can reversibly regulate tight junctions in human body. It changes the permeability of intestinal epithelial cells by regulating the state of tight junctions. Increased intestinal permeability can lead to abnormal activation of intestinal mucosal immune and bacterial translocation, then inducing systemic inflammation. It has already been reported that zonulin plays an important pathogenic role in a variety of diseases by regulating tight junctions leading to an abnormal increase of intestinal permeability. However, the research on the pathogenic role and mechanism of zonulin pathway in kidney disease is still in its infancy. Therefore, we reviewed the progress on pathophysiological characteristics of zonulin as well as the pathogenesis of zonulin in kidney disease in this paper.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Buckley A, Turner JR (2018) Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a029314

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fasano A (2000) Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin. Ann N Y Acad Sci 915:214–222. https://doi.org/10.1111/j.1749-6632.2000.tb05244.x

    CAS  Article  PubMed  Google Scholar 

  3. Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS, Antalis TM, Vogel SN, Zhao A, Yang S, Arrietta MC, Meddings JB, Fasano A (2009) Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA 106(39):16799–16804. https://doi.org/10.1073/pnas.0906773106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hollande F, Blanc EM, Bali JP, Whitehead RH, Pelegrin A, Baldwin GS, Choquet A (2001) HGF regulates tight junctions in new nontumorigenic gastric epithelial cell line. Am J Physiol Gastrointest Liver Physiol 280(5):G910-921. https://doi.org/10.1152/ajpgi.2001.280.5.G910

    CAS  Article  PubMed  Google Scholar 

  5. Jin ML, Barron E, He S, Ryan SJ, Hinton DR (2002) Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest Ophth Vis Sci 43(8):2782–2790

    Google Scholar 

  6. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91(1):151–175. https://doi.org/10.1152/physrev.00003.2008

    CAS  Article  PubMed  Google Scholar 

  7. El Asmar R, Panigrahi P, Bamford P, Bert I, Not T, Coppa GV, Catassi C, Fasano A (2003) Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure (vol 123, pg 1607, 2002). Gastroenterology 124(1):275–275

    Article  Google Scholar 

  8. Wang WL, Uzzau S, Goldblum SE, Fasano A (2000) Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 113(24):4435–4440

    CAS  Article  Google Scholar 

  9. Lu R, Wang W, Uzzau S, Vigorito R, Zielke HR, Fasano A (2000) Affinity purification and partial characterization of the zonulin/zonula occludens toxin (Zot) receptor from human brain. J Neurochem 74(1):320–326. https://doi.org/10.1046/j.1471-4159.2000.0740320.x

    CAS  Article  PubMed  Google Scholar 

  10. Li CW, Gao M, Zhang W, Chen CY, Zhou FY, Hu ZX, Zeng CY (2016) Zonulin regulates intestinal permeability and facilitates enteric bacteria permeation in coronary artery disease. Sci Rep UK. https://doi.org/10.1038/srep29142

    Article  Google Scholar 

  11. Ciccia F, Guggino G, Rizzo A, Alessandro R, Luchetti MM, Milling S, Saieva L, Cypers H, Stampone T, Di Benedetto P, Gabrielli A, Fasano A, Elewaut D, Triolo G (2017) Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis 76(6):1123–1132. https://doi.org/10.1136/annrheumdis-2016-210000

    CAS  Article  PubMed  Google Scholar 

  12. Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, Drago S, Congia M, Fasano A (2003) Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 52(2):218–223. https://doi.org/10.1136/gut.52.2.218

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Barone MV, Gimigliano A, Castoria G, Paolella G, Maurano F, Paparo F, Maglio M, Mineo A, Miele E, Nanayakkara M, Troncone R, Auricchio S (2007) Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut 56(4):480–488. https://doi.org/10.1136/gut.2005.086637

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Lammers KM, Lu RL, Brownley J, Lu B, Gerard C, Thomas K, Rallabhandi P, Shea-Donohue T, Tamiz A, Alkan S, Netzel-Arnett S, Antalis T, Vogel SN, Fasano A (2008) Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135(1):194–204. https://doi.org/10.1053/j.gastro.2008.03.023

    CAS  Article  PubMed  Google Scholar 

  15. Ritz E (2011) Intestinal-renal syndrome: mirage or reality? Blood Purif 31(1–3):70–76. https://doi.org/10.1159/000321848

    Article  PubMed  Google Scholar 

  16. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni ZM, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315. https://doi.org/10.1038/ki.2012.345

    Article  PubMed  Google Scholar 

  17. Vaziri ND, Yuan J, Norris K (2013) Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 37(1):1–6. https://doi.org/10.1159/000345969

    CAS  Article  PubMed  Google Scholar 

  18. Yang J, Lim SY, Ko YS, Lee HY, Oh SW, Kim MG, Cho WY, Jo SK (2019) Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease. Nephrol Dial Transpl 34(3):419–428. https://doi.org/10.1093/ndt/gfy172

    CAS  Article  Google Scholar 

  19. Sandberg DH, Bernstein CW, McIntosh RM, Carr R, Strauss J (1977) Severe steroid-responsive nephrosis associated with hypersensitivity. Lancet 1(8008):388–391. https://doi.org/10.1016/s0140-6736(77)92603-4

    CAS  Article  PubMed  Google Scholar 

  20. Lagrue G, Laurent J, Rostoker G (1989) Food allergy and idiopathic nephrotic syndrome. Kidney Int Suppl 27:S147-151

    CAS  PubMed  Google Scholar 

  21. Laurent J, Rostoker G, Robeva R, Bruneau C, Lagrue G (1987) Is adult idiopathic nephrotic syndrome food allergy? Value Oligoantigenic Diets Nephron 47(1):7–11. https://doi.org/10.1159/000184448

    CAS  Article  PubMed  Google Scholar 

  22. Lemley KV, Faul C, Schramm K, Meyers K, Kaskel F, Dell KM, Gipson DS, Gibson K, Trachtman H (2016) The effect of a gluten-free diet in children with difficult-to-manage nephrotic syndrome. Pediatrics. https://doi.org/10.1542/peds.2015-4528

    Article  PubMed  Google Scholar 

  23. Trachtman H, Gipson DS, Lemley KV, Troost JP, Faul C, Morrison DJ, Vento SM, Ahn DH, Goldberg JD, Sedor J, Dell K, Schachere M, Lemley K, Whitted L, Srivastava T, Haney C, Sethna C, Grammatikopoulos K, Appel G, Toledo M, Greenbaum L, Wang C, Lee B, Adler S, Nast C, La Page J, Athavale A, Itteera M, Neu A, Boynton S, Fervenza F, Hogan M, Lieske J, Chernitskiy V, Kaskel F, Kumar N, Flynn P, Kopp J, Castro-Rubio E, Brede E, Trachtman H, Zhdanova O, Modersitzki F, Vento S, Lafayette R, Mehta K, Gadegbeku C, Johnstone D, Pfeffer Z, Cattran D, Hladunewich M, Reich H, Ling P, Romano M, Fornoni A, Barisoni L, Bidot C, Kretzler M, Gipson D, Williams A, Pitter R, Nachman P, Gibson K, Grubbs S, Froment A, Holzman L, Meyers K, Kallem K, Cerecino FJ, Sambandam K, Brown E, Johnson N, Jefferson A, Hingorani S, Tuttle K, Klepach K, Dismuke S, Cooper A, Freedman B, Lin JJ, Spainhour M, Gray S, Kretzler M, Barisoni L, Gadegbeku C, Gillespie B, Gipson D, Gizinski B, Holzman L, Mariani L, Sampson M, Song P, Troost J, Zee J, Herreshoff E, Kincaid C, Lienczewski C, Mainieri T, Williams A, Group NC (2019) Plasma zonulin levels in childhood nephrotic syndrome. Front Pediatr. https://doi.org/10.3389/fped.2019.00197

    Article  PubMed  PubMed Central  Google Scholar 

  24. Madhusudhan T, Wang HJ, Straub BK, Grone E, Zhou QX, Shahzad K, Muller-Krebs S, Schwenger V, Gerlitz B, Grinnell BW, Griffin JH, Reiser J, Grone HJ, Esmon CT, Nawroth PP, Isermann B (2012) Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood 119(3):874–883. https://doi.org/10.1182/blood-2011-07-365973

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Schell C, Huber TB (2017) The evolving complexity of the podocyte cytoskeleton. J Am Soc Nephrol 28(11):3166–3174. https://doi.org/10.1681/Asn.2017020143

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Kotanko P, Carter M, Levin NW (2006) Intestinal bacterial microflora—a potential source of chronic inflammation in patients with chronic kidney disease. Nephrol Dial Transpl 21(8):2057–2060. https://doi.org/10.1093/ndt/gfl281

    Article  Google Scholar 

  27. Gupta J, Mitra N, Kanetsky PA, Devaney J, Wing MR, Reilly M, Shah VO, Balakrishnan VS, Guzman NJ, Girndt M, Periera BG, Feldman HI, Kusek JW, Joffe MM, Raj DS, Investigators CS (2012) Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol 7(12):1938–1946. https://doi.org/10.2215/Cjn.03500412

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Ficek J, Wyskida K, Ficek R, Wajda J, Klein D, Witkowicz J, Rotkegel S, Spiechowicz-Zaton U, Kocemba-Dyczek J, Ciepal J, Wiecek A, Olszanecka-Glinianowicz M, Chudek J (2017) Relationship between plasma levels of zonulin, bacterial lipopolysaccharides, d-lactate and markers of inflammation in haemodialysis patients. Int Urol Nephrol 49(4):717–725. https://doi.org/10.1007/s11255-016-1495-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Lukaszyk E, Lukaszyk M, Koc-Zorawska E, Tobolczyk J, Bodzenta-Lukaszyk A, Malyszko J (2015) Iron status and inflammation in early stages of chronic kidney disease. Kidney Blood Press R 40(4):366–373. https://doi.org/10.1159/000368512

    CAS  Article  Google Scholar 

  30. Lukaszyk E, Lukaszyk M, Koc-Zorawska E, Bodzenta-Lukaszyk A, Malyszko J (2018) Zonulin, inflammation and iron status in patients with early stages of chronic kidney disease. Int Urol Nephrol 50(1):121–125. https://doi.org/10.1007/s11255-017-1741-5

    CAS  Article  PubMed  Google Scholar 

  31. Malyszko J, Koc-Zorawska E, Levin-Iaina N, Malyszko J (2014) Zonulin, iron status, and anemia in kidney transplant recipients: are they related? Transpl Proc 46(8):2644–2646. https://doi.org/10.1016/j.transproceed.2014.09.018

    CAS  Article  Google Scholar 

  32. Al-Obaide MAI, Singh R, Datta P, Rewers-Felkins KA, Salguero MV, Al-Obaidi I, Kottapalli KR, Vasylyeva TL (2017) Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J Clin Med. https://doi.org/10.3390/jcm6090086

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ambruzs JM, Walker PD, Larsen CP (2014) The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin J Am Soc Nephrol 9(2):265–270. https://doi.org/10.2215/Cjn.04660513

    Article  PubMed  Google Scholar 

  34. Zhou N, Shen Y, Fan L, Sun Q, Huang C, Hao J, Lan J, Yan H (2020) The characteristics of intestinal-barrier damage in rats With IgA nephropathy. Am J Med Sci 359(3):168–176. https://doi.org/10.1016/j.amjms.2019.11.011

    Article  PubMed  Google Scholar 

  35. Peng SN, Zeng HH, Fu AX, Chen XW, Zhu QX (2013) Effects of rhein on intestinal epithelial tight junction in IgA nephropathy. World J Gastroenterol 19(26):4137–4145. https://doi.org/10.3748/wjg.v19.i26.4137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G, Maranzano V, Gozzi G, Serrazanetti D, Dalfino G, Gobbetti M, Gesualdo L (2014) Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS ONE 9(6):e99006. https://doi.org/10.1371/journal.pone.0099006

    Article  PubMed  PubMed Central  Google Scholar 

  37. Coppo R, Mazzucco G, Martina G, Roccatello D, Amore A, Novara R, Bargoni A, Piccoli G, Sena LM (1989) Gluten-induced experimental IgA glomerulopathy. Lab Invest 60(4):499–506

    CAS  PubMed  Google Scholar 

  38. Coppo R (2018) The gut-renal connection in IgA nephropathy. Semin Nephrol 38(5):504–512. https://doi.org/10.1016/j.semnephrol.2018.05.020

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature search and data analysis were performed by JY and NZ. The first draft of the manuscript was written by JY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Shen, Y. & Zhou, N. Advances in the role and mechanism of zonulin pathway in kidney diseases. Int Urol Nephrol 53, 2081–2088 (2021). https://doi.org/10.1007/s11255-020-02756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02756-9

Keywords

  • Zonulin
  • Tight junction
  • Permeability
  • Kidney disease