Skip to main content

Advertisement

Log in

Comparison of cardiovascular mortality in hemodialysis versus peritoneal dialysis

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Cardiovascular disease is a significant cause of morbidity and mortality in dialysis patients. With the increasing prevalence of dialysis patients, there is a need to systematically identify the epidemiology of cardiovascular disease in hemodialysis and peritoneal dialysis patients.

Methods

A meta-analysis was conducted in reference to the MOOSE and PRISMA guidelines. Database searches were conducted on Medline and Embase on 17 March 2020. Meta-analysis of proportions was used to summarize the overall prevalence of events. Pairwise comparisons were used to compare between hemodialysis and peritoneal dialysis, and meta-regression was applied to identify the factors influencing disease.

Results

A total of 28 studies were included in the review and prevalence of cardiovascular disease events including coronary artery disease, coronary artery complications, congestive heart failure, peripheral arterial disease, atrial fibrillation, and cardiovascular mortality were summarized. Atrial fibrillation (RR 1.287 CI 1.154–1.436, p < 0.001), congestive heart failure (RR 1.229 CI 1.074–1.407, p = 0.003), and peripheral arterial disease (RR 1.132 CI 1.021–1.255, p = 0.019) were more common in hemodialysis patients, but cardiovascular mortality was lower in hemodialysis relative to peritoneal dialysis patients. (RR 0.892 CI 0.828–0.960, p = 0.002).

Conclusion

The authors have found fewer cardiovascular events but higher cardiovascular mortality in patients on PD as compared to those on HD. Future research is required to establish the causality between dialysis modality and the cardiovascular outcomes described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material (data transparency)

Please contact the corresponding author if any required.

References

  1. Sharma S, Sarnak MJ (2017) The global burden of reduced GFR: ESRD, CVD and mortality. Nature Rev Nephrol 13(8):447–448

    Google Scholar 

  2. Levin A et al (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 390(10105):1888–1917

    PubMed  Google Scholar 

  3. Wolfe RA et al (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 341(23):1725–1730

    CAS  PubMed  Google Scholar 

  4. Schold J et al (2009) Half of kidney transplant candidates who are older than 60 years now placed on the waiting list will die before receiving a deceased-donor transplant. Clin J Am Soc Nephrol 4(7):1239–1245

    PubMed  PubMed Central  Google Scholar 

  5. Parikh NI et al (2006) Cardiovascular disease risk factors in chronic kidney disease: overall burden and rates of treatment and control. Arch Intern Med 166(17):1884–1891

    PubMed  Google Scholar 

  6. Johnson DW et al (2007) Metabolic syndrome in severe chronic kidney disease: Prevalence, predictors, prognostic significance and effects of risk factor modification. Nephrology (Carlton) 12(4):391–398

    CAS  Google Scholar 

  7. Levin A (2003) The clinical epidemiology of cardiovascular diseases in chronic kidney disease: clinical epidemiology of cardiovascular disease in chronic kidney disease prior to dialysis. Semin Dial 16(2):101–105

    PubMed  Google Scholar 

  8. Foley RN, Parfrey PS, Sarnak MJ (1998) Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol 9(12 Suppl):S16-23

    CAS  PubMed  Google Scholar 

  9. Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    PubMed  PubMed Central  Google Scholar 

  10. Stroup DF et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting.Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283(15):2008–12

    CAS  PubMed  Google Scholar 

  11. Nyaga VN, Arbyn M, Aerts M (2014) Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health 72(1):39

    PubMed  PubMed Central  Google Scholar 

  12. Doi SA et al (2015) Advances in the meta-analysis of heterogeneous clinical trials I: The inverse variance heterogeneity model. Contemp Clin Trials 45(Pt A):130–138

    PubMed  Google Scholar 

  13. Fletcher J (2007) What is heterogeneity and is it important? BMJ 334(7584):94–96

    PubMed  PubMed Central  Google Scholar 

  14. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    CAS  PubMed  Google Scholar 

  15. Harbord RM, Higgins JPT (2008) Meta-regression in stata. Stata Jl 8(4):493–519

    Google Scholar 

  16. Knapp G, Hartung J (2003) Improved tests for a random effects meta-regression with a single covariate. Stat Med 22(17):2693–2710

    PubMed  Google Scholar 

  17. Wan X et al (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14(1):135

    PubMed  PubMed Central  Google Scholar 

  18. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5(1):13

    PubMed  PubMed Central  Google Scholar 

  19. Harbord RM, Egger M, Sterne JAC (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25(20):3443–3457

    PubMed  Google Scholar 

  20. Wells G et al. (2000) The Newcastle–Ottawa Scale (NOS) for assessing the quality of non-randomized studies in meta-analysis

  21. Chang JH et al (2013) Hemodialysis leads to better survival in patients with diabetes or high comorbidity, compared to peritoneal dialysis. Tohoku J Exp Med 229(4):271–277

    PubMed  Google Scholar 

  22. Choi SR et al (2003) Comparative study of renal replacement therapy in Korean diabetic end-stage renal disease patients: a single center study. Yonsei Med J 44(3):454–462

    PubMed  Google Scholar 

  23. Genovesi S et al (2017) Sudden death in end stage renal disease: comparing hemodialysis versus peritoneal dialysis. Blood Purif 44(1):77–88

    PubMed  Google Scholar 

  24. Gentil MA et al (1991) Comparison of survival in continuous ambulatory peritoneal dialysis and hospital haemodialysis: a multicentric study. Nephrol Dial Transplant 6(6):444–451

    CAS  PubMed  Google Scholar 

  25. Heaf JG, Løkkegaard H, Madsen M (2002) Initial survival advantage of peritoneal dialysis relative to haemodialysis. Nephrol Dial Transplant 17(1):112–117

    PubMed  Google Scholar 

  26. Hou F et al (2012) China collaborative study on dialysis: a multi-centers cohort study on cardiovascular diseases in patients on maintenance dialysis. BMC Nephrol 13:94

    PubMed  PubMed Central  Google Scholar 

  27. Jung HY et al (2019) Dialysis modality-related disparities in sudden cardiac death: hemodialysis versus peritoneal dialysis. Kidney Res Clin Pract 38(4):490–498

    PubMed  PubMed Central  Google Scholar 

  28. Kayalar AO et al (2016) Comparison of Long-term Complications in Patients on Haemodialysis and Peritoneal Dialysis Longer than 10 Years. J Clin Diagn Res 10(2):05–08

    Google Scholar 

  29. Kim HJ et al (2017) The pattern of choosing dialysis modality and related mortality outcomes in Korea: a national population-based study. Korean J Intern Med 32(4):699–710

    PubMed  PubMed Central  Google Scholar 

  30. Kim SC et al (2015) Relationship between pulmonary hypertension, peripheral vascular calcification, and major cardiovascular events in dialysis patients. Kidney Res Clin Pract 34(1):28–34

    PubMed  PubMed Central  Google Scholar 

  31. Lee SW et al (2019) Comparative study of peritoneal dialysis versus hemodialysis on the clinical outcomes in Korea: a population-based approach. Sci Rep 9(1):5905

    PubMed  PubMed Central  Google Scholar 

  32. Mehrotra R et al (2011) Serum albumin as a predictor of mortality in peritoneal dialysis: comparisons with hemodialysis. Am J Kidney Dis 58(3):418–428

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nader MA et al (2017) In-hospital mortality in cirrhotic patients with end-stage renal disease treated with hemodialysis versus peritoneal dialysis: a nationwide study. Perit Dial Int 37(4):464–471

    PubMed  Google Scholar 

  34. Niu J et al (2019) Dialysis Modality and incident atrial fibrillation in older patients with ESRD. Am J Kidney Dis 73(3):324–331

    PubMed  Google Scholar 

  35. Shen C-H et al (2016) Increased risk of atrial fibrillation in end-stage renal disease patients on dialysis: A nationwide, population-based study in Taiwan. Medicine 95(25):e3933–e3933

    PubMed  PubMed Central  Google Scholar 

  36. Weinhandl ED, Gilbertson DT, Collins AJ (2016) Mortality, hospitalization, and technique failure in daily home hemodialysis and matched peritoneal dialysis patients: a matched cohort study. Am J Kidney Dis 67(1):98–110

    PubMed  Google Scholar 

  37. Foley RN et al (1998) Mode of dialysis therapy and mortality in end-stage renal disease. J Am Soc Nephrol 9(2):267–276

    CAS  PubMed  Google Scholar 

  38. Gokal R et al (1987) OUTCOME in patients on continuous ambulatory peritoneal dialysis and haemodialysis: 4-year analysis of a prospective multicentre study. The Lancet 330(8568):1105–1109

    Google Scholar 

  39. Johnson DW et al (2009) Association of dialysis modality and cardiovascular mortality in incident dialysis patients. Clin J Am Soc Nephrol CJASN 4(10):1620–1628

    PubMed  Google Scholar 

  40. Klinger M, Madziarska K (2019) Mortality predictor pattern in hemodialysis and peritoneal dialysis in diabetic patients. Adv Clin Exp Med 28(1):133–135

    PubMed  Google Scholar 

  41. Lee CC, Sun CY, Wu MS (2009) Long-term modality-related mortality analysis in incident dialysis patients. Perit Dial Int 29(2):182–190

    PubMed  Google Scholar 

  42. Maiorca R et al (1991) A multicenter, selection-adjusted comparison of patient and technique survivals on CAPD and hemodialysis. Perit Dial Int 11(2):118–127

    CAS  PubMed  Google Scholar 

  43. Quinn RR et al (2014) Impact of modality choice on rates of hospitalization in patients eligible for both peritoneal dialysis and hemodialysis. Perit Dial Int 34(1):41–48

    PubMed  PubMed Central  Google Scholar 

  44. Sens F et al (2011) Survival advantage of hemodialysis relative to peritoneal dialysis in patients with end-stage renal disease and congestive heart failure. Kidney Int 80(9):970–977

    PubMed  Google Scholar 

  45. Sharabas I, Siddiqi N (2016) Cardiovascular disease risk profiles comparison among dialysis patients. Saudi J Kidney Dis Transpl 27(4):692–700

    PubMed  Google Scholar 

  46. Borràs Sans M et al (2017) The modality of dialysis does not influence atheromatous vascular disease progression or cardiovascular outcomes in dialysis patients without previous cardiovascular disease. PLoS One 12(11):e0186921

    PubMed  PubMed Central  Google Scholar 

  47. Abuhasira R et al (2018) Atrial fibrillation characteristics in patients on haemodialysis vs peritoneal dialysis. Sci Rep 8(1):2976

    PubMed  PubMed Central  Google Scholar 

  48. Oguntola SO et al (2019) Atherosclerotic vascular disease is more prevalent among black ESKD patients on long-term CAPD in South Africa. BMC Nephrol 20(1):399

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Korevaar JC et al (2003) Effect of starting with hemodialysis compared with peritoneal dialysis in patients new on dialysis treatment: a randomized controlled trial. Kidney Int 64(6):2222–2228

    PubMed  Google Scholar 

  50. Rao NN et al (2016) The Impact of Arteriovenous Fistulae for Hemodialysis on the Cardiovascular System. Semin Dial 29(3):214–221

    PubMed  Google Scholar 

  51. MacRae JM et al (2004) Arteriovenous fistula-associated high-output cardiac failure: a review of mechanisms. Am J Kidney Dis 43(5):e17-22

    PubMed  Google Scholar 

  52. Bourquelot P (2016) Access flow reduction for cardiac failure. J Vasc Access 17(Suppl 1):S60–S63

    PubMed  Google Scholar 

  53. Chang TI et al (2019) Blood pressure and incident atrial fibrillation in older patients initiating hemodialysis. Clin J Am Soc Nephrol 14(7):1029–1038

    PubMed  PubMed Central  Google Scholar 

  54. Reinecke H et al (2009) Dilemmas in the management of atrial fibrillation in chronic kidney disease. J Am Soc Nephrol 20(4):705–711

    CAS  PubMed  Google Scholar 

  55. Rajagopalan S et al (2006) Peripheral arterial disease in patients with end-stage renal disease. Circulation 114(18):1914–1922

    PubMed  Google Scholar 

  56. Okamoto S, Iida O, Mano T (2017) Current perspective on hemodialysis patients with peripheral artery disease. Ann Vasc Dis 10(2):88–91

    PubMed  PubMed Central  Google Scholar 

  57. Betjes MG (2013) Immune cell dysfunction and inflammation in end-stage renal disease. Nature Rev Nephrol 9(5):255

    CAS  Google Scholar 

  58. Jablonski KL, Chonchol M (2013) Vascular calcification in end-stage renal disease. Hemodialysis international. Int Symp Home Hemodialysis 17(01):17–21

    Google Scholar 

  59. Termorshuizen F et al (2003) Hemodialysis and peritoneal dialysis: comparison of adjusted mortality rates according to the duration of dialysis: analysis of The Netherlands Cooperative Study on the Adequacy of Dialysis 2. J Am Soc Nephrol 14(11):2851–2860

    PubMed  Google Scholar 

  60. Collins AJ et al (1999) Mortality risks of peritoneal dialysis and hemodialysis. Am J Kidney Dis 34(6):1065–1074

    CAS  PubMed  Google Scholar 

  61. Schaube DE, Morrison HI, Fenton SS (1998) Comparing mortality rates on CAPD/CCPD and hemodialysis. The Canadian experience: fact or fiction? Perit Dial Int 18(5):478–84

    Google Scholar 

  62. Tonelli M et al (2011) Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 11(10):2093–2109

    CAS  PubMed  Google Scholar 

  63. Tang M, Li T, Liu H (2016) A comparison of transplant outcomes in peritoneal and hemodialysis patients: a meta-analysis. Blood Purif 42(2):170–176

    PubMed  Google Scholar 

Download references

Funding

None to declare.

Author information

Authors and Affiliations

Authors

Contributions

CHN: Conceptualisation, methodology, data analysis, writing of original draft. ZHO: Conceptualisation, methodology, data analysis, writing of original draft. HKS: Supervision, review and editing, methodology. TBW: Conceptualisation, supervision, review and editing, resources.

Corresponding authors

Correspondence to Cheng Han Ng or Zhi Hao Ong.

Ethics declarations

Conflicts of interest

None to declare.

Code availability (software application or custom code)

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, C.H., Ong, Z.H., Sran, H.K. et al. Comparison of cardiovascular mortality in hemodialysis versus peritoneal dialysis. Int Urol Nephrol 53, 1363–1371 (2021). https://doi.org/10.1007/s11255-020-02683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02683-9

Keywords

Navigation