Skip to main content
Log in

Oxalobacter formigenes reduce the risk of kidney stones in patients exposed to oral antibiotics: a case–control study

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

This is the first prospective study to investigate the association between kidney stones, bone mineral density, serum testosterone, colon cancer and O. formigenes colonization. 40 kidney stone patients and 85 controls were enrolled. O. formigenes colonization was established. BMD was examined from T- and Z-scores using dual energy absorptiometry. O. formigenes was found in 28 of 40 cases and 80 of 85 controls. BMD was significantly reduced in patients (p < 0.05). The evaluation revealed a significant association between lowered O. formigenes colonization and low testosterone. Urinary calcium and oxalates levels were greater in patient. Serum testosterone and urinary citrate concentrations was reduced in patients with a significant difference. Also an association between O. formigenes and colon cancer was noted. Absence of O. formigenes might stand for a pathogenic factor in calcium oxalate stone, low bone mineral density, low testosterone levels and also colon cancer, when antibiotics are prescribed generously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dawson KA, Allison MJ, Hartman PA (1980) Isolation and some characteristics of anaerobic oxalate degrading bacteria from the rumen. Appl Environ Microbiol 40:833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allison MJ, Dawson KA, Maybarry WR, Foss JG (1985) Oxalobacter formigenes gen. nov. sp. nov.: oxalate degrading anaerobes that inhibit the gastrointestinal tract. Arch Microbiol 141:1–7

    Article  CAS  PubMed  Google Scholar 

  3. Daniel SL, Hartman PA, Allison MJ (1987) Microbial degradation of oxalate in the gastrointestinal tracts of rats. Appl Environ Microbiol 53:1793–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Argenzio RA, Liacos JA, Allison MJ (1988) Intestinal oxalate degrading bacteria reduce oxalate absorption and toxicity in guinea pigs. J Nutr 118:787–791

    Article  CAS  PubMed  Google Scholar 

  5. Doane LA, Liebman M, Caldwell DR (1989) Microbial oxalate degradation: effects on oxalate and calcium balance in humans. Nutr Res 9:957–964

    Article  CAS  Google Scholar 

  6. Abe K, Ruan ZS, Maloney PC (1996) Cloning, sequencing and expression of OXIT, the oxalate: formate exchange protein of Oxalobacter formigenes. J Biol Chem 271:6789–6793

    Article  CAS  PubMed  Google Scholar 

  7. Sidhu H, Holmes RP, Allison MJ, Peck AB (1999) Direct quantification of the enteric bacterium Oxalobacter formigenes in human fecal samples by quantitative competitive-template PCR. J Clin Microbiol 37:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaufman DW (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19:1197–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmidt ME, Muller SC, Hesse A, Sidhu H, Peck AB (2001) Signification of the bacterium Oxalobacter formigenes in case of development of calcium oxalate urolithiasis after antibiotic treatment. J Urol 165:S246

    Google Scholar 

  10. Kwak C (2001) Molecular identification of Oxalobacter formigenes with the polymerase chain reaction in fresh or frozen fecal samples. BJU Int 88:627–632

    Article  CAS  PubMed  Google Scholar 

  11. Kumar R (2002) Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India. Eur Urol 41:318–322

    Article  CAS  PubMed  Google Scholar 

  12. Kumar R, Ghoshal UC, Singh G, Mittal RD (2004) Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease: possible role in renal stone formation. J Gastroenterol Hepatol 19:1403–1409

    Article  PubMed  Google Scholar 

  13. Duncan SH (2002) Oxalobacter formigenes and its potential role in human health. Appl Environ Microbiol 68:3841–3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hatch M (2006) Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int 69:691–698

    Article  CAS  PubMed  Google Scholar 

  15. Kwak C, Kim HK, Kim EC, Choi MS, Kim HH (2003) Urinary oxalate levels and the enteric bacterium Oxalobacter formigenes in patients with calcium oxalate urolithiasis. Eur Urol 44:475–481

    Article  CAS  PubMed  Google Scholar 

  16. Knoll T (2010) Epidemiology, pathogenesis and pathophysiology of urolithiasis. Eur Urol 9:802–806

    Article  CAS  Google Scholar 

  17. Chauhan CK, Joshi MJ, Vaidya ADB (2008) Growth inhibition of struvite crystals in the presence of herbal extract Commiphora wightii. J Mater Sci 20:85–92

    Google Scholar 

  18. Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344

    Article  CAS  PubMed  Google Scholar 

  19. Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12:86–96

    Google Scholar 

  20. Edvardsson VO, Indridason OS, Haraldsson G, Kjartansson O, Palsson R (2003) Temporal trends in the incidence of kidney stone disease. Kidney Int 83:146–152

    Article  Google Scholar 

  21. Afsar B (2016) The role of sodium intake in nephrolithiasis: epidemiology, pathogenesis, and future directions. Eur J Intern Med 35:16–19

    Article  CAS  PubMed  Google Scholar 

  22. Robertson WG, Heyburn PJ, Peacock M, Hanes FA, Swaminathan R (1979) The effect of high animal protein intake on the risk of calcium stone-formation in the urinary tract. Clin Sci 57:285–288

    Article  CAS  Google Scholar 

  23. Singh KB, Sailo S (2013) Understanding epidemiology and etiologic factors of urolithiasis: an overview. Sci Vis 13:169–174

    Google Scholar 

  24. SoIa NH, Walter TM (2016) Prevalence and risk factors of kidney stone. Glob J Res Anal 5:183–187

    Google Scholar 

  25. Scales CD, Smith AC, Hanley JM, Saigal CS (2012) Prevalence of kidney stones in the United States. Eur Urol 62:160–165

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sidhu H (1997) Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reaction-based detection system. Mol Diagn 2:89–97

    Article  CAS  PubMed  Google Scholar 

  27. Sidhu H (1999) Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 10:S334–S340

    CAS  PubMed  Google Scholar 

  28. Tugcu V (2007) Bone mineral density measurement in patients with recurrent normocalciuric calcium stone disease. Urol Res 35:29–34

    Article  CAS  PubMed  Google Scholar 

  29. Arrabal PMA, Arrabal MM, Arias SS (2013) Bone and metabolic markers in women with recurrent calcium stones. Korean J Urol 54:177–182

    Article  Google Scholar 

  30. Arrabal PMA (2011) Mineral density and bone remodelling markers in patient with calcium lithiasis. BJU Int 108:1903–1908

    Article  Google Scholar 

  31. Orimo H (2001) Diagnostic criteria for primary osteoporosis: year 2000 revision. J Bone Miner Metab 19:331–337

    Article  CAS  PubMed  Google Scholar 

  32. Siener R (2013) The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 83:1144–1149

    Article  CAS  PubMed  Google Scholar 

  33. Batislam E, Yilmaz E, Yuvanc E, Kisa O, Kisa U (2012) Quantitative analysis of colonization with real-time PCR to identify the role of Oxalobacter formigenes in calcium oxalate urolithiasis. Urol Res 2012(40):455–460

    Article  Google Scholar 

  34. Troxel SA, Sidhu H, Kaul P, Low RK (2003) Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol 17:173–176

    Article  PubMed  Google Scholar 

  35. Borghi L, Nouvenne A, Meschi T (2010) Probiotics and dietary manipulations in calcium oxalate nephrolithiasis: two sides of the same coin? Kidney 78:1063–1065

    CAS  Google Scholar 

  36. Chin KY, Ima NS (2012) Sex steroids and bone health status in men. Int J Endocrinol. https://doi.org/10.1155/2012/208719

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gielen E, Vanderschueren D, Callewaert F, Boonen S (2011) Osteoporosis in men. Best Pract Res Clin Endocrinol Metab 25:321–335

    Article  CAS  PubMed  Google Scholar 

  38. Naghii MR, Babaei M, Hedayati M (2014) Androgens involvement in the pathogenesis of renal stones formation. PLoS ONE. https://doi.org/10.1371/journal.pone.0093790

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao Z, Mai Z, Ou L, Duan X, Zeng G (2013) Serum estradiol and testosterone levels in kidney stones disease with and without calcium oxalate components in naturally postmenopausal women. PLoS ONE. https://doi.org/10.1371/journal.pone.0075513

    Article  PubMed  PubMed Central  Google Scholar 

  40. Watson JM (2010) Serum testosterone may be associated with calcium oxalate urolithogenesis. J Endourol 24:1183–1187

    Article  PubMed  Google Scholar 

  41. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. Cancer J Clin 61:69–90

    Article  Google Scholar 

  42. Ferlay J (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:359–386

    Article  CAS  Google Scholar 

  43. Nistal E, Fernandez FN, Vivas S, Olcoz JL (2015) Factors determining colorectal cancer: the role of the intestinal microbiota. Front Oncol. https://doi.org/10.3389/fonc.2015.00220

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gagniere J (2016) Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016(22):501–518

    Article  CAS  Google Scholar 

  45. Arnold JW, Roach J, Azcarate PMA (2016) Emerging technologies for gut microbiome research. Cell Press 24:887–901

    CAS  Google Scholar 

  46. Verma M (2017) Mechanistic and technical challenges in studying the human microbiome and cancer epidemiology. Technol Cancer Res Treat 16:150–158

    Article  CAS  PubMed  Google Scholar 

  47. Sobhani I (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE. https://doi.org/10.1371/journal.pone.0016393

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arumugam M (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bi Y, Qin N, Yang R (2015) Human microbiota: a neglected “organ” in precision medicine. Infect Dis Transl Med 1:63–72

    Google Scholar 

  50. Qin J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maccaferri S, Biagi E, Brigidi P (2011) Metagenomics: key to human gut microbiota. Dig Dis 29:525–530

    Article  PubMed  Google Scholar 

  52. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE (2012) A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 10:575–582

    Article  CAS  PubMed  Google Scholar 

  53. Marchesi JR (2011) Towards the human colorectal cancer microbiome. PLoS ONE. https://doi.org/10.1371/journal.pone.0020447

    Article  PubMed  PubMed Central  Google Scholar 

  54. Geng J, Fan H, Tang X, Zhai H, Zhang Z (2013) Diversified pattern of the human colorectal cancer microbiome. Gut Pathog. https://doi.org/10.1186/1757-4749-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  55. Muhammad OS, Farooq MA, Rabia A (2015) Association between serum total testosterone and Body Mass Index in middle aged healthy men. Pak J Med Sci. 31:355–359

    Google Scholar 

  56. Leslie SW, Sajjad H, Bashir K. 24-Hour Urine Testing for Nephrolithiasis Interpretation. [Updated 2020 May 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan. https://www.ncbi.nlm.nih.gov/books/NBK482448/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaiyan Velmurugan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participant and animal rights statement

This research involved human participants. This research is based on prospective analysis of investigating the association between kidney stones, bone mineral density, serum testosterone, colon cancer and O. formigenes colonization upon the exposure to oral antibiotics; in accordance with our Institution ethics committee approval. Informed consent from the patients and healthy subjects were sought for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, Y., Begum, R. & Velmurugan, R. Oxalobacter formigenes reduce the risk of kidney stones in patients exposed to oral antibiotics: a case–control study. Int Urol Nephrol 53, 13–20 (2021). https://doi.org/10.1007/s11255-020-02627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02627-3

Keywords

Navigation