Skip to main content

Advertisement

Log in

Autophagy in diabetic nephropathy: a review

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is the leading cause of end stage renal disease. 40% of the patients worldwide will require replacement therapy after 20 years of DM worldwide. Early-stage diabetic nephropathy is characterized by hyperfiltration related to hypeglycemia-induced afferent artery vasodilatation with micro-and macroalbuminuria. Later on, proteinuria with arterial hypertension may appear, culminating in glomerular filtration rate (GFR) decline and end stage renal disease. Forty percent of diabetic patients develop microvascular and macrovascular complications, with increased risk among patients with genetic predisposition, such as Haptoglobin 2–2 phenotype. The most frequent complications in the daily clinical practice are diabetic kidney disease, diabetic retinopathy and vascular disease, such as coronary artery disease and stroke. Various pathways are involved in the pathogenesis of diabetic kidney disease. Chronic systemic inflammation and the inflammatory response, such as increased circulating cytokines (Interleukins), have been recognized as main players in the development and progression of diabetic kidney disease. DM is also associated with increased oxidative stress, and alterations in carbohydrate, lipid and protein metabolism. Overexpression of the renin-angiotensin-aldosterone system (RAAS) in the kidney, the vitamin D-Vitamin D receptor-klotho axis, and autophagy. Differences in the ATG5 protein levels or ATG5 gene expression involved in the autophagy process have been associated with diabetic complications such as diabetic kidney disease. Under normal blood glucose level, autophagy is an important protective mechanism in renal epithelial cells, including podocytes, proximal tubular, mesangial and endothelial cells. Down regulation of the autophagic mechanism, as in hyperglycemic condition, can contribute to the development and progression of diabetic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3

Similar content being viewed by others

Abbreviations

DM:

Diabetes Mellitus

DKD:

Diabetic Kidney Disease

VDR:

Vitamin D Receptor

SGLT2I:

Sodium-Glucose-Transport 2 Inhibitor

GFR:

Glomerular Filtration rate

ESRD:

End Stage Renal Disease

PCT:

Proximal Convolute Tubule

References

  1. Zimmet P, Alberti KG, Magliano DJ et al (2016) Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol 12:616–622

    PubMed  Google Scholar 

  2. Polonsky KS (2012) The past 200 years in diabetes. N Engl J Med 367:1332–1340

    CAS  PubMed  Google Scholar 

  3. Genuth S (1982) Classification and diagnosis of diabetes mellitus. Med Clin North Am 66:1191–1207

    CAS  PubMed  Google Scholar 

  4. Doshi SM, Friedman AN (2017) Diagnosis and management of type 2 diabetic kidney disease. CJASN 12(8):1366–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77–82

    Google Scholar 

  6. Lim AKH (2014) Diabetic nephropathy–complications and treatment. Int J Nephrol Renovasc Dis 12:361–381

    Google Scholar 

  7. Levy AP, Asleh R, Blum S, Nakhoul F et al (2010) Haptoglobin: basic and clinical aspects. Antioxid Redox Signal 12(2):293–304

    CAS  PubMed  Google Scholar 

  8. Mora-Fernández C, Domínguez-Pimentel V, de Fuentes MM et al (2014) Diabetic kidney disease: from physiology to therapeutics. J Physiol 592:3997–4012

    PubMed  PubMed Central  Google Scholar 

  9. Liang S, Cai GY, Chen XM (2017) Clinical and pathological factors associated with progression of diabetic nephropathy. Nephrology 22:14–19

    CAS  PubMed  Google Scholar 

  10. Petrica L, Vlad A, Gluhovschi G et al (2015) Glycated peptides are associated with proximal tubule dysfunction in type 2 diabetes mellitus. Iny J Clin Exp Med 8(2):2516–2525

    CAS  Google Scholar 

  11. Petrica L, Petrica M, Vlad A et al (2011) Proximal tubule dysfunction is dissociated from endothelial dysfunction in normoalbuminuric patients with type 2 diabetes mellitus: a cross-sectional study. Nephron Clin Pract 118:155–164

    Google Scholar 

  12. Milas O, Petrica GF et al (2018) Deregulated profiles of urinary microRNAs may explain podocyte injury and proximal tubule dysfunction in normoalbuminuric patients with type 2 diabetes mellitus. J Invest Med 2:18

    Google Scholar 

  13. Petrica L, Milas O, Mihaela VladInterleukins M et al (2019) Interleukines and miRNAs intervene in the early stages of diabetic kidney disease in Type 2 diabetes mellitus patient. Biomarkers Med 13:18

    Google Scholar 

  14. Dahan I, Thawho N, Farber E et al (2018) The Iron-Klotho-VDR axis is a major determinant of proximal convoluted tubule Injury in Haptoglobin 2–2 Genotype diabetic nephropathy patients and mice. J Diabetes Res 71:63–652

    Google Scholar 

  15. Nakhoul F, Nakhoul N, Thaucho N et al (2015) The Non Mineral Axis Klotho-Vitamin D in diabetic nephropathy:review. J Diabetes Metab 6:7

    Google Scholar 

  16. Eltablawy N, Ashour H, Rashed LA, Hamza W (2018) Vitamin D protection from rat diabetic nephropathy is partly mediated through Klotho expression and renin-angiotensin inhibition. Arch Physiol Biochem 124(5):461–467

    CAS  PubMed  Google Scholar 

  17. Nakhoul R, Nakhoul F, Nakhoul N (2017) Diabetic Nephropathy from RAAS to Autophagy: The Era for New Players. J Clin Exp Nephrol 2:43

    Google Scholar 

  18. Kim MK (2017) Treatment of diabetic kidney disease : current and future targets. Korean J Intern Med 32(4):622–630

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS (2018) Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc 117(8):662–675

    CAS  PubMed  Google Scholar 

  20. Nakhoul R, Koch E, Nakhoul F et al (2018) Sodium-glucose transporter inhibitors and diabetic nephropathy in humans and animal model. J Clini Experim Nephrol 12:6

    Google Scholar 

  21. Ding Y, Choi ME (2015) Autophagy in diabetic nephropathy. J Endocrinol 224(1):R15–R30

    CAS  PubMed  Google Scholar 

  22. Kume S, Yamahara K, Yasuda M et al (2014) Autophagy: emerging therapeutic target for diabetic nephropathy. Semin Nephrol 34(1):9–16

    CAS  PubMed  Google Scholar 

  23. Takabatake Y, Kimura T, Takahashi A et al (2014) Autophagy and the kidney: health and disease. Nephrol Dial Transplant 29:1639–1647

    PubMed  Google Scholar 

  24. Yang D, Livingston MJ, Liu Z et al (2018) Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 75(4):669–688

    CAS  PubMed  Google Scholar 

  25. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. New Engl J Med 368(7):651–662

    CAS  PubMed  Google Scholar 

  26. Ding Y, Choi ME (2015) Autophagy in diabetic nephropathy. J Endocrinol 224:15–23

    Google Scholar 

  27. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamahara K, Yasuda M, Kume S et al (2013) The role of autophagy in the pathogenesis of diabetic nephropathy. J Diabetes Res 2013:193757

    PubMed  PubMed Central  Google Scholar 

  29. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Investig 125(1):25–32

    PubMed  PubMed Central  Google Scholar 

  30. Kim J, Kundu M, Viollet B et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Inoki K (2014) mTOR signaling in autophagy. Sem Nephrol 34:2–8

    CAS  Google Scholar 

  32. Tanida I, Ueno T, Kominam E (2008) LC3 and autophagy - methods in molecular biology. Methods Mol Biol 445:77–88

    CAS  PubMed  Google Scholar 

  33. Arakawa S, Honda S, Yamaguchi H et al (2017) Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Acad Ser B Phys Biol Sci 93(6):378–385

    CAS  Google Scholar 

  34. Geng J, Klionsky D (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. Protein Rev EMBO Rep 9:859–864

    CAS  Google Scholar 

  35. Xu Y, Liu L, Xin W et al (2015) The renoprotective role of autophagy activation in proximal tubular epithelial cells in diabetic nephropathy. J Diabetes Complications 29:976–983

    PubMed  Google Scholar 

  36. Walczak M, Martens S (2013) Dissecting the role of the Atg12–Atg5-Atg16 complex during autophagosome formation. Autophagy 9(3):424–425

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanada T, Noda NN, Satomi Y et al (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302

    CAS  PubMed  Google Scholar 

  38. Rabanal-Ruiz Y, Otten EG, Korolchuk V (2017) MTORC1 as the main gateway to autophagy. Essays Biochem 61:565–584

    PubMed  PubMed Central  Google Scholar 

  39. Ye X, Zhou XJ, Zhange H (2018) Exploring the role of autophagy-related gene 5 (ATG5ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front Immunol 9:1–15

    Google Scholar 

  40. Li A, Zhang H, Han H, Wang WZS, Hwang Z et al (2019) LC3 promotes the nuclear translocation of the vitamin D receptor and decreases fibrogenic gene expression in proximal renal tubules. Metabolism 98:95–103

    CAS  PubMed  Google Scholar 

  41. Liu L, Yang L, Changc B, Zhang J, Guo Y, Yang X (2018) The protective effects of rapamycin on cell autophagy in the renal tissues of rats with diabetic nephropathy via mTOR-S6K1-LC3II signaling pathway. Ren Fail 40(1):492–497

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kitada M, Ogura Y, Itaru Monno I et al (2017) Regulating autophagy as a therapeutic target for diabetic nephropathy. Curr Diab Rep 17:53

    PubMed  Google Scholar 

  43. Warren AM, Knudsen ST, Cooper ME (2019) Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin Ther Targets 23(7):579–591

    PubMed  Google Scholar 

  44. Lenoir O, Tharaux PL, Huber TB (2016) Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int 90:950–964

    CAS  PubMed  Google Scholar 

  45. Kimura T, Isaka Y (2017) Yoshimori T autophagy and kidney inflammation. Autophagy 13(6):997–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sakai S, Yamamoto T, Takabatake Y, Takahashi A, Namba-Hamano T, Minami S et al (2019) Proximal tubule autophagy differs in type 1 and 2 diabetes. J Am Soc Nephrol 30(6):929–945

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu Y, Liub L, Wei Xin W et al (2015) The renoprotective role of autophagy activation in proximal tubular epithelial cells in diabetic nephropathy. J Diabetes Compl 29:976–983

    Google Scholar 

  48. Fang L, Zhou Y, Cao H et al (2013) Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia- induced podocyte injury. PLoS ONE 8(4):e60546

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tanaka Y, Kume S, Kitada M et al (2012) Autophagy as a therapeutic target in diabetic nephropathy. Exp Diabetes Res 12:4

    Google Scholar 

  50. Kume S, Koya D (2015) Autophagy: a novel therapeutic target for diabetic nephropathy. Diabetes Metab J 39(6):451–460

    PubMed  PubMed Central  Google Scholar 

  51. Fioretto P, Zambon A, Rossato M et al (2016) SGLT2 Inhibitors and the diabetic kidney. Diabetes Care 39(2):S165–S171

    CAS  PubMed  Google Scholar 

  52. Alicic AZ, Neumiller JJ, Johnson EJ et al (2019) Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes 68(2):248–257

    CAS  PubMed  Google Scholar 

  53. Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. New Engl J Med 375(4):323–334

    CAS  PubMed  Google Scholar 

  54. Xu C, Wang W, Zhong J et al (2018) Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells. Biochem Pharmacol 152:45–59

    CAS  PubMed  Google Scholar 

  55. Liu WJ, Huang WF, Ye L (2018) The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur Rev Med Pharmacol Sci 22:3182–3189

    PubMed  Google Scholar 

  56. Yamahara K, Yasuda M, Kume S (2013) The role of autophagy in the pathogenesis of diabetic nephropathy. J Diabetes Res 20:13

    Google Scholar 

  57. Schuster A, Al-Makki A, Shepler B (2019) Use of paricalcitol as adjunctive therapy to renin-angiotensin-aldosterone system inhibition for diabetic nephropathy: a systematic review of the literature. Clin Ther 41(11):2416–2423

    CAS  PubMed  Google Scholar 

  58. Hamzawy M, Gouda SAA, Rashid L, Attia Morcos M, Shoukry H, Sharawy N (2017) The cellular selection between apoptosis and autophagy: roles of vitamin D, glucose and immune response in diabetic nephropathy. Endocrine 58(1):66–80

    CAS  PubMed  Google Scholar 

  59. Wang H, Wang J, Qu H et al (2016) In vitro and in vivo inhibition of mTOR by 1, 25-dihydroxyvitamin D 3 to improve early diabetic nephropathy via the DDIT4/TSC2/mTOR pathway. Endocrine 1:348–359

    Google Scholar 

  60. Xiao T, Guan X, Nie L et al (2014) Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice. Mol Cell Biochem 394:145–154

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Karim Family in memory of their son Hasan karim Magd Alkoroum, ISRAEL. MIGAL The Internal ministry for the development of Galilee-North Israel

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the formation of overall concept. Nn, Nf and KE wrote the manuscript and NR, EF, Ht edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Farid Nakhoul.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, E.A.T., Nakhoul, R., Nakhoul, F. et al. Autophagy in diabetic nephropathy: a review. Int Urol Nephrol 52, 1705–1712 (2020). https://doi.org/10.1007/s11255-020-02545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02545-4

Keyword

Navigation