Skip to main content

Advertisement

Log in

Pleiotropic effects of antidiabetic agents on renal and cardiovascular outcomes: a meta-analysis of randomized controlled trials

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

This meta-analysis was conducted to examine the pleiotropic effects of all available antidiabetic agents except insulin for type 2 diabetes on renal and cardiovascular outcomes.

Methods

A systematic literature search was performed in PubMed, EMBASE, and Cochrane database to identify randomized-controlled trials which compared the effectiveness between all antidiabetic agents apart from insulin regarding all aspects of renal and cardiovascular outcomes. Random effect model was utilized to compute for hazard ratio.

Results

Nineteen articles with 140,851 participants were included in this meta-analysis. When compared with placebo, SGLT-2 inhibitors, GLP-1 agonists, and DPP-4 inhibitors exhibited significantly lower hazard ratios of progression of albuminuria. SGLT-2 inhibitors and DPP-4 inhibitors showed a significantly higher hazard ratio of regression of albuminuria. Only SGLT-2 inhibitors illustrated significantly lower hazard ratios of doubling of serum creatinine and incidence of renal replacement therapy (RRT). A significantly lower hazard ratio of composite renal outcome was detected in both SGLT-2 inhibitors and GLP-1 agonists. A significantly lower hazard ratio of all-cause mortality was identified in SGLT-2 inhibitors and GLP-1 agonist. Furthermore, a significantly lower hazard ratio of cardiovascular mortality was found in both SGLT-2 inhibitors and GLP-1 agonists.

Conclusion

Comparing across all antidiabetic agents apart from insulin, SGLT-2 inhibitors provided extensively renoprotective effects among diabetic patients as well as reduced hazard ratios of heart failure, cardiovascular mortality, and all-cause mortality. GLP-1 agonists yielded benefits regarding progression of albuminuria, composite renal outcome, and cardiovascular and all-cause mortalities. DPP-4 inhibitors offered only renal protection including progression and regression of albuminuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaiser AB, Zhang N, Der Pluijm WV (2018) Global prevalence of Type 2 diabetes over the next ten years (2018–2028). Diabetes 67(Supplement 1):202. https://doi.org/10.2337/db18-202-LB

    Article  Google Scholar 

  2. Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77. https://doi.org/10.2337/diaclin.26.2.77

    Article  Google Scholar 

  3. Zelnick LR, Weiss NS, Kestenbaum BR, Robinson-Cohen C, Heagerty PJ, Tuttle K et al (2017) Diabetes and CKD in the United States Population, 2009–2014. Clin J Am Soc Nephrol 12(12):1984–1990. https://doi.org/10.2215/cjn.03700417

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reidy K, Kang HM, Hostetter T, Susztak K (2014) Molecular mechanisms of diabetic kidney disease. J Clin Invest 124(6):2333–2340. https://doi.org/10.1172/JCI72271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA et al (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321(7258):405–412. https://doi.org/10.1136/bmj.321.7258.405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP et al (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393(10166):31–39. https://doi.org/10.1016/S0140-6736(18)32590-X

    Article  CAS  PubMed  Google Scholar 

  7. Rehman MB, Tudrej BV, Soustre J, Buisson M, Archambault P, Pouchain D et al (2017) Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: meta-analysis of placebo-controlled randomized clinical trials. Diabetes Metab 43(1):48–58. https://doi.org/10.1016/j.diabet.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  8. Prischl FC, Wanner C (2018) Renal outcomes of antidiabetic treatment options for Type 2 diabetes—a proposed MARE definition. Kidney Int Rep 3(5):1030–1038. https://doi.org/10.1016/j.ekir.2018.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kohan DE, Fioretto P, Tang W, List JF (2014) Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 85(4):962–971. https://doi.org/10.1038/ki.2013.356

    Article  CAS  PubMed  Google Scholar 

  10. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George J et al (2018) Empagliflozin and clinical outcomes in patients with Type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137(2):119–129. https://doi.org/10.1161/circulationaha.117.028268

    Article  CAS  PubMed  Google Scholar 

  11. Fioretto P, Stefansson BV, Johnsson E, Cain VA, Sjostrom CD (2016) Dapagliflozin reduces albuminuria over 2 years in patients with type 2 diabetes mellitus and renal impairment. Diabetologia 59(9):2036–2039. https://doi.org/10.1007/s00125-016-4017-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Neal B, Perkovic V, Matthews DR, Mahaffey KW, Fulcher G, Meininger G et al (2017) Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R): a randomized, placebo-controlled trial. Diabetes Obes Metab 19(3):387–393. https://doi.org/10.1111/dom.12829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM et al (2019) Canagliflozin and renal outcomes in Type 2 diabetes and nephropathy. N Engl J Med 380(24):2295–2306. https://doi.org/10.1056/NEJMoa1811744

    Article  CAS  PubMed  Google Scholar 

  14. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A et al (2019) Dapagliflozin and cardiovascular outcomes in Type 2 diabetes. N Engl J Med 380(4):347–357. https://doi.org/10.1056/NEJMoa1812389

    Article  CAS  PubMed  Google Scholar 

  15. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Kober LV et al (2015) Lixisenatide in patients with Type 2 diabetes and acute coronary syndrome. N Engl J Med 373(23):2247–2257. https://doi.org/10.1056/NEJMoa1509225

    Article  CAS  PubMed  Google Scholar 

  16. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA et al (2016) Semaglutide and cardiovascular outcomes in patients with Type 2 diabetes. N Engl J Med 375(19):1834–1844. https://doi.org/10.1056/NEJMoa1607141

    Article  CAS  PubMed  Google Scholar 

  17. Mann JFE, Orsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S et al (2017) Liraglutide and renal outcomes in Type 2 diabetes. N Engl J Med 377(9):839–848. https://doi.org/10.1056/NEJMoa1616011

    Article  CAS  PubMed  Google Scholar 

  18. Tonneijck L, Smits MM, Muskiet MH, Hoekstra T, Kramer MH, Danser AH et al (2016) Renal effects of DPP-4 inhibitor sitagliptin or GLP-1 receptor agonist liraglutide in overweight patients with type 2 diabetes: a 12-week, randomized, double-blind. Placebo Controlled Trial Diabetes Care 39(11):2042–2050. https://doi.org/10.2337/dc16-1371

    Article  CAS  PubMed  Google Scholar 

  19. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB et al (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377(13):1228–1239. https://doi.org/10.1056/NEJMoa1612917

    Article  CAS  PubMed  Google Scholar 

  20. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P et al (2019) Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394(10193):121–130. https://doi.org/10.1016/S0140-6736(19)31149-3

    Article  CAS  PubMed  Google Scholar 

  21. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J et al (2015) Effect of sitagliptin on cardiovascular outcomes in Type 2 diabetes. N Engl J Med 373(3):232–242. https://doi.org/10.1056/NEJMoa1501352

    Article  CAS  PubMed  Google Scholar 

  22. Cooper ME, Perkovic V, McGill JB, Groop PH, Wanner C, Rosenstock J et al (2015) Kidney disease end points in a pooled analysis of individual patient-level data from a large clinical trials program of the dipeptidyl peptidase 4 inhibitor linagliptin in Type 2 diabetes. Am J Kidney Dis 66(3):441–449. https://doi.org/10.1053/j.ajkd.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  23. Mosenzon O, Leibowitz G, Bhatt DL, Cahn A, Hirshberg B, Wei C et al (2017) Effect of saxagliptin on renal outcomes in the SAVOR-TIMI 53 trial. Diabetes Care 40(1):69–76. https://doi.org/10.2337/dc16-0621

    Article  CAS  PubMed  Google Scholar 

  24. Groop PH, Cooper ME, Perkovic V, Hocher B, Kanasaki K, Haneda M et al (2017) Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial. Diabetes Obes Metab 19(11):1610–1619. https://doi.org/10.1111/dom.13041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenstock J, Perkovic V, Johansen OE, Cooper ME, Kahn SE, Marx N et al (2019) Effect of linagliptin vs placebo on major cardiovascular events in adults with Type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA 321(1):69–79. https://doi.org/10.1001/jama.2018.18269

    Article  CAS  PubMed  Google Scholar 

  26. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M et al (2016) Empagliflozin and progression of kidney disease in Type 2 diabetes. N Engl J Med 375(4):323–334. https://doi.org/10.1056/NEJMoa1515920

    Article  CAS  PubMed  Google Scholar 

  27. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N et al (2017) Canagliflozin and cardiovascular and renal events in Type 2 diabetes. N Engl J Med 377(7):644–657. https://doi.org/10.1056/NEJMoa1611925

    Article  CAS  PubMed  Google Scholar 

  28. Muskiet MHA, Tonneijck L, Huang Y, Liu M, Saremi A, Heerspink HJL et al (2018) Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 6(11):859–869. https://doi.org/10.1016/S2213-8587(18)30268-7

    Article  CAS  PubMed  Google Scholar 

  29. Bethel MA, Mentz RJ, Merrill P, Buse JB, Chan JC, Goodman SG et al (2018) Renal outcomes in the exenatide study of cardiovascular event lowering (EXSCEL). Diabetes 67(Supplement 1):522. https://doi.org/10.2337/db18-522-P

    Article  Google Scholar 

  30. DeFronzo RA, Lewin A, Patel S, Liu D, Kaste R, Woerle HJ et al (2015) Combination of empagliflozin and linagliptin as second-line therapy in subjects with type 2 diabetes inadequately controlled on metformin. Diabetes Care 38(3):384–393. https://doi.org/10.2337/dc14-2364

    Article  CAS  PubMed  Google Scholar 

  31. Lewin A, DeFronzo RA, Patel S, Liu D, Kaste R, Woerle HJ et al (2015) Initial combination of empagliflozin and linagliptin in subjects with type 2 diabetes. Diabetes Care 38(3):394–402. https://doi.org/10.2337/dc14-2365

    Article  CAS  PubMed  Google Scholar 

  32. American Diabetes Association (2019) Standards of medical care in diabetes—2019 Abridged for Primary Care Providers (2019). Clin Diabetes 37(1):11–34. https://doi.org/10.2337/cd18-0105

    Article  PubMed Central  Google Scholar 

  33. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 74(10):e177–e232. https://doi.org/10.1016/j.jacc.2019.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V et al (2019) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. https://doi.org/10.1093/eurheartj/ehz486

    Article  PubMed  Google Scholar 

  35. American Diabetes Association (2020) Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care 43(Suppl 1):S98–s110. https://doi.org/10.2337/dc20-S009

    Article  Google Scholar 

  36. Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI (2018) Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int 94(1):26–39. https://doi.org/10.1016/j.kint.2017.12.027

    Article  CAS  PubMed  Google Scholar 

  37. Alicic RZ, Johnson EJ, Tuttle KR (2018) SGLT2 inhibition for the prevention and treatment of diabetic kidney disease: a review. Am J Kidney Dis 72(2):267–277. https://doi.org/10.1053/j.ajkd.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  38. Muskiet MHA, Tonneijck L, Smits MM, van Baar MJB, Kramer MHH, Hoorn EJ et al (2017) GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 13(10):605–628. https://doi.org/10.1038/nrneph.2017.123

    Article  CAS  PubMed  Google Scholar 

  39. Haluzík M, Jan F et al (2013) Renal effects of DPP-4 inhibitors: a focus on microalbuminuria. Int J Endocrinol 2013:7. https://doi.org/10.1155/2013/895102

    Article  CAS  Google Scholar 

  40. Omar B, Ahren B (2014) Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes 63(7):2196–2202. https://doi.org/10.2337/db14-0052

    Article  PubMed  Google Scholar 

  41. Greco EV, Russo G, Giandalia A, Viazzi F, Pontremoli R, De Cosmo S (2019) GLP-1 receptor agonists and kidney protection. Medicina (Kaunas) 55:6. https://doi.org/10.3390/medicina55060233

    Article  Google Scholar 

Download references

Funding

This study was funded by a Grant from Research Unit for Metabolic Bone Disease in CKD patients. Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Study design: AC and KT. Review of citations and articles: AC, KT, and SI. Analysis: PS. Manuscript preparation: AC, KT, and SI. Manuscript review and edits: AC, KT, SI, PS, KP, and SE.

Corresponding author

Correspondence to Paweena Susantitaphong.

Ethics declarations

Conflict of interest

On behalf of all authors, Paweena Susantitaphong states that there is no conflict of interest.

Ethical approval

For this type of study, ethical approval is not required.

Informed consent

For this type of study, formal consent is not required.

Human/animal rights statement

This study did not directly involve human participants or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chewcharat, A., Takkavatakarn, K., Isaranuwatchai, S. et al. Pleiotropic effects of antidiabetic agents on renal and cardiovascular outcomes: a meta-analysis of randomized controlled trials. Int Urol Nephrol 52, 1733–1745 (2020). https://doi.org/10.1007/s11255-020-02520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02520-z

Keywords

Navigation