Skip to main content

Advertisement

Log in

Vinpocetine reduces cisplatin-induced acute kidney injury through inhibition of NF–κB pathway and activation of Nrf2/ARE pathway in rats

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Acute kidney injury is a complex clinical disease that is associated with a high incidence of morbidity and mortality. Drug-induced acute kidney injury occurs in approximately 19–33% of hospitalized patients. Cisplatin, one of the most commonly used and effective chemotherapeutic drugs not only exerts anti-tumor effects but also causes renal toxicity damage, affecting its clinical application. Vinpocetine is an anti-inflammatory and antioxidant drug that predominately acts in the nervous system. In this study, we investigated the effects and mechanisms of vinpocetine in an animal model of cisplatin-induced acute renal injury. Rats were randomly divided into three experimental groups. During a 10-day trial, rats in the control group were administered a physiological saline solution; rats in the model group received a 5 mg/kg intraperitoneal injection of cisplatin; and rats in the cisplatin + vinpocetine group received a 5 mg/kg intraperitoneal injection of cisplatin as well as a 5 mg/kg dose of vinpocetine via gavage. We observed that following cisplatin administration, the rats exhibited an increase in blood urea and creatinine levels as well as an increase in their inflammation and oxidative stress levels. In renal tissue, cisplatin caused the morphological changes typical of acute tubular injury. Vinpocetine reduced the cisplatin-induced acute renal function damage and tubular injury. In both in vivo and in vitro experiments, we found that vinpocetine can confer protection of rat renal cells by inhibiting the NF–κB signaling pathway and activating the Nrf2/ARE signaling pathway. Therefore, vinpocetine is a promising therapeutic drug for the treatment of cisplatin-induced acute kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stover EH, Konstantinopoulos PA, Matulonis UA, Swisher EM (2016) Biomarkers of response and resistance to DNA repair targeted therapies. Clin Cancer Res 22(23):5651–5660. https://doi.org/10.1158/1078-0432.ccr-16-0247

    Article  CAS  PubMed  Google Scholar 

  2. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. https://doi.org/10.1016/j.ejphar.2014.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584. https://doi.org/10.1038/nrc2167

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Lopez-Novoa JM, Morales AI (2011) An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol 41(10):803–821. https://doi.org/10.3109/10408444.2011.602662

    Article  CAS  PubMed  Google Scholar 

  5. Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23(5):460–464

    Article  CAS  PubMed  Google Scholar 

  6. Galgamuwa R, Hardy K, Dahlstrom JE, Blackburn AC, Wium E, Rooke M, Cappello JY, Tummala P, Patel HR, Chuah A, Tian L, McMorrow L, Board PG, Theodoratos A (2016) Dichloroacetate prevents cisplatin-induced nephrotoxicity without compromising cisplatin anticancer properties. J Am Soc Nephrol JASN 27(11):3331–3344. https://doi.org/10.1681/asn.2015070827

    Article  CAS  PubMed  Google Scholar 

  7. Meng XM, Ren GL, Gao L, Yang Q, Li HD, Wu WF, Huang C, Zhang L, Lv XW, Li J (2018) NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation. Lab Investig 98(1):63–78. https://doi.org/10.1038/labinvest.2017.120

    Article  CAS  PubMed  Google Scholar 

  8. Wang T, Zhang X, Li JJ (2002) The role of NF-kappaB in the regulation of cell stress responses. Int Immunopharmacol 2(11):1509–1520

    Article  CAS  PubMed  Google Scholar 

  9. Baichwal VR, Baeuerle PA (1997) Activate NF-kappa B or die? Curr Biol CB 7(2):R94–96. https://doi.org/10.1016/s0960-9822(06)00046-7

    Article  CAS  PubMed  Google Scholar 

  10. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866. https://doi.org/10.1038/sj.onc.1203239

    Article  CAS  PubMed  Google Scholar 

  11. Heckman PR, Wouters C, Prickaerts J (2015) Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer's disease: a translational overview. Curr Pharm Des 21(3):317–331. https://doi.org/10.2174/1381612820666140826114601

    Article  CAS  PubMed  Google Scholar 

  12. Bagoly E, Feher G, Szapary L (2007) The role of vinpocetine in the treatment of cerebrovascular diseases based in human studies. Orv Hetil 148(29):1353–1358. https://doi.org/10.1556/oh.2007.28115

    Article  PubMed  Google Scholar 

  13. Tamaki N, Matsumoto S (1985) Agents to improve cerebrovascular circulation and cerebral metabolism–vinpocetine. Nihon Rinsho Jpn J Clin Med 43(2):376–378

    CAS  Google Scholar 

  14. Medina AE (2011) Therapeutic utility of phosphodiesterase type I inhibitors in neurological conditions. Front Neurosci 5:21. https://doi.org/10.3389/fnins.2011.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma S, Deshmukh R (2015) Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats. Neuroscience 286:393–403. https://doi.org/10.1016/j.neuroscience.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  16. Gupta S, Sharma B (2014) Protective effects of phosphodiesterase-1 (PDE1) and ATP sensitive potassium (KATP) channel modulators against 3-nitropropionic acid induced behavioral and biochemical toxicities in experimental Huntingtons disease. Eur J Pharmacol 732:111–122. https://doi.org/10.1016/j.ejphar.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Zarpelon AC, Staurengo-Ferrari L, Silva RL, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA Jr (2015) Vinpocetine reduces lipopolysaccharide-induced inflammatory pain and neutrophil recruitment in mice by targeting oxidative stress, cytokines and NF-kappaB. Chem Biol Interact 237:9–17. https://doi.org/10.1016/j.cbi.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  18. Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, Abe J, Berk BC, Li JD, Yan C (2010) Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci USA 107(21):9795–9800. https://doi.org/10.1073/pnas.0914414107

    Article  PubMed  PubMed Central  Google Scholar 

  19. Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS (2019) Vinpocetine improves oxidative stress and pro-inflammatory mediators in acute kidney injury. Int J Prevent Med 10:142. https://doi.org/10.4103/ijpvm.IJPVM_5_19

    Article  Google Scholar 

  20. Francescato HDC, Almeida LF, Reis NG, Faleiros CM, Papoti M, Costa RS, Coimbra TM (2018) Previous exercise effects in cisplatin-induced renal lesions in rats. Kidney Blood Pressure Res 43(2):582–593. https://doi.org/10.1159/000488964

    Article  CAS  Google Scholar 

  21. Ibrahim ME, Bana EE, El-Kerdasy HI (2018) Role of bone marrow derived mesenchymal stem cells and the protective effect of silymarin in cisplatin-induced acute renal failure in rats. Am J Med Sci 355(1):76–83. https://doi.org/10.1016/j.amjms.2017.08.004

    Article  PubMed  Google Scholar 

  22. Moreno-Gordaliza E, Esteban-Fernandez D, Lazaro A, Aboulmagd S, Humanes B, Tejedor A, Linscheid MW, Gomez-Gomez MM (2018) Lipid imaging for visualizing cilastatin amelioration of cisplatin-induced nephrotoxicity. J Lipid Res 59(9):1561–1574. https://doi.org/10.1194/jlr.M080465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi YM, Kim HK, Shim W, Anwar MA, Kwon JW, Kwon HK, Kim HJ, Jeong H, Kim HM, Hwang D, Kim HS, Choi S (2015) Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ROS generation. PLoS ONE 10(8):e0135083. https://doi.org/10.1371/journal.pone.0135083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan H, Shen K, Wang X, Meng H, Wang C, Jin B (2014) Protective effect of metalloporphyrins against cisplatin-induced kidney injury in mice. PLoS ONE 9(1):e86057. https://doi.org/10.1371/journal.pone.0086057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Latcha S, Jaimes EA, Patil S, Glezerman IG, Mehta S, Flombaum CD (2016) Long-term renal outcomes after cisplatin treatment. Clin J Am Soc Nephrol CJASN 11(7):1173–1179. https://doi.org/10.2215/cjn.08070715

    Article  CAS  PubMed  Google Scholar 

  26. Lebwohl D, Canetta R (1998) Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer 34(10):1522–1534. https://doi.org/10.1016/s0959-8049(98)00224-x

    Article  CAS  PubMed  Google Scholar 

  27. Shiraishi F, Curtis LM, Truong L, Poss K, Visner GA, Madsen K, Nick HS, Agarwal A (2000) Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am J Physiol Renal Physiol 278(5):F726–736. https://doi.org/10.1152/ajprenal.2000.278.5.F726

    Article  CAS  PubMed  Google Scholar 

  28. Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS (2014) Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol CJASN 9(1):12–20. https://doi.org/10.2215/cjn.02730313

    Article  CAS  PubMed  Google Scholar 

  29. Yang L, Xing G, Wang L, Wu Y, Li S, Xu G, He Q, Chen J, Chen M, Liu X, Zhu Z, Yang L, Lian X, Ding F, Li Y, Wang H, Wang J, Wang R, Mei C, Xu J, Li R, Cao J, Zhang L, Wang Y, Xu J, Bao B, Liu B, Chen H, Li S, Zha Y, Luo Q, Chen D, Shen Y, Liao Y, Zhang Z, Wang X, Zhang K, Liu L, Mao P, Guo C, Li J, Wang Z, Bai S, Shi S, Wang Y, Wang J, Liu Z, Wang F, Huang D, Wang S, Ge S, Shen Q, Zhang P, Wu L, Pan M, Zou X, Zhu P, Zhao J, Zhou M, Yang L, Hu W, Wang J, Liu B, Zhang T, Han J, Wen T, Zhao M, Wang H (2015) Acute kidney injury in China: a cross-sectional survey. Lancet (London, England) 386(10002):1465–1471. https://doi.org/10.1016/s0140-6736(15)00344-x

    Article  Google Scholar 

  30. Cao SS, Yan M, Hou ZY, Chen Y, Jiang YS, Fan XR, Fang PF, Zhang BK (2017) Danshen modulates Nrf2-mediated signaling pathway in cisplatin-induced renal injury. J Huazhong Univ Sci Technol Med Sci 37(5):761–765. https://doi.org/10.1007/s11596-017-1801-1

    Article  CAS  Google Scholar 

  31. Guerrero-Hue M, Farre-Alins V, Palomino-Antolin A, Parada E, Rubio-Navarro A, Egido J, Egea J, Moreno JA (2017) Targeting Nrf2 in protection against renal disease. Curr Med Chem 24(33):3583–3605. https://doi.org/10.2174/0929867324666170511120814

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Z, Liu C, Chen S, Zhao H, Zhou K, Wang W, Yuan Y, Li Z, Guo Y, Shen Z, Mei X (2017) Activation of the Nrf2/ARE signaling pathway by probucol contributes to inhibiting inflammation and neuronal apoptosis after spinal cord injury. Oncotarget 8(32):52078–52093. https://doi.org/10.18632/oncotarget.19107

    Article  PubMed  PubMed Central  Google Scholar 

  33. Izumi Y, Kataoka H, Inose Y, Akaike A, Koyama Y, Kume T (2018) Neuroprotective effect of an Nrf2-ARE activator identified from a chemical library on dopaminergic neurons. Eur J Pharmacol 818:470–479. https://doi.org/10.1016/j.ejphar.2017.11.023

    Article  CAS  PubMed  Google Scholar 

  34. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3(1):17–26. https://doi.org/10.1038/nrd1279

    Article  CAS  PubMed  Google Scholar 

  35. Nagashima K, Sasseville VG, Wen D, Bielecki A, Yang H, Simpson C, Grant E, Hepperle M, Harriman G, Jaffee B, Ocain T, Xu Y, Fraser CC (2006) Rapid TNFR1-dependent lymphocyte depletion in vivo with a selective chemical inhibitor of IKKbeta. Blood 107(11):4266–4273. https://doi.org/10.1182/blood-2005-09-3852

    Article  CAS  PubMed  Google Scholar 

  36. Bellezza I, Mierla AL, Minelli A (2010) Nrf2 and NF-kappaB and their concerted modulation in cancer pathogenesis and progression. Cancers 2(2):483–497. https://doi.org/10.3390/cancers2020483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res MCR 4(4):221–233. https://doi.org/10.1158/1541-7786.mcr-05-0261

    Article  PubMed  Google Scholar 

  38. Surh YJ, Kundu JK, Na HK, Lee JS (3001s) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135(12 Suppl):2993s–3001s. https://doi.org/10.1093/jn/135.12.2993S

    Article  CAS  PubMed  Google Scholar 

  39. Chang J, Zhang Y, Li Y, Lu K, Shen Y, Guo Y, Qi Q, Wang M, Zhang S (2018) NrF2/ARE and NF-kappaB pathway regulation may be the mechanism for lutein inhibition of human breast cancer cell. Fut Oncol (London, England) 14(8):719–726. https://doi.org/10.2217/fon-2017-0584

    Article  CAS  Google Scholar 

  40. Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochem Biophys Acta 1783(5):713–727. https://doi.org/10.1016/j.bbamcr.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  41. Yu M, Li H, Liu Q, Liu F, Tang L, Li C, Yuan Y, Zhan Y, Xu W, Li W, Chen H, Ge C, Wang J, Yang X (2011) Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal 23(5):883–892. https://doi.org/10.1016/j.cellsig.2011.01.014

    Article  CAS  PubMed  Google Scholar 

  42. Ishola IO, Akinyede AA, Adeluwa TP, Micah C (2018) Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Metab Brain Dis 33(5):1493–1500. https://doi.org/10.1007/s11011-018-0256-9

    Article  CAS  PubMed  Google Scholar 

  43. Wadie W, El-Tanbouly DM (2017) Vinpocetine mitigates proteinuria and podocytes injury in a rat model of diabetic nephropathy. Eur J Pharmacol 814:187–195. https://doi.org/10.1016/j.ejphar.2017.08.027

    Article  CAS  PubMed  Google Scholar 

  44. Fattori V, Borghi SM, Guazelli CFS, Giroldo AC, Crespigio J, Bussmann AJC, Coelho-Silva L, Ludwig NG, Mazzuco TL, Casagrande R, Verri WA Jr (2017) Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-kappaB activation in mice. Pharmacol Res 120:10–22. https://doi.org/10.1016/j.phrs.2016.12.039

    Article  CAS  PubMed  Google Scholar 

  45. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86. https://doi.org/10.1186/1476-4598-12-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684. https://doi.org/10.1038/sj.onc.1209954

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Wuhan Central Hospital, Wuhan, Hubei, China, for the project support. This work was supported by the Wuhan Municipal Health Commission (No. WZ16A01).

Author information

Authors and Affiliations

Authors

Contributions

LD and YY helped design and implement animal experiments. WY, YG, and JX provided technical support in cell experiments. The first draft of the manuscript was written by WS and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenli Chen or Jingwei Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

The animal study was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) and the ABSL-3 Institutional Biosafety Committee (IBC). All experiments were performed in strict accordance with the recommendations of the National Institutes of Health Laboratory Animal Care and Use Guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Yin, W., Ding, L. et al. Vinpocetine reduces cisplatin-induced acute kidney injury through inhibition of NF–κB pathway and activation of Nrf2/ARE pathway in rats. Int Urol Nephrol 52, 1389–1401 (2020). https://doi.org/10.1007/s11255-020-02485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02485-z

Keywords

Navigation