Skip to main content
Log in

High-sensitivity Troponin I Predicts Galectin-3 in Chronic Kidney Disease Patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Plasma galectin-3 (pG3) regulates inflammation. B-type natriuretic peptide (BNP), high-sensitivity Troponin I (hsTnI), and pG3 concentrations are elevated in chronic kidney disease (CKD) patients. The associations of pG3 with hsTnI/BNP are unclear. We explored the relationship of hsTnI and BNP with pG3 in Asian CKD patients and healthy controls.

Methods

We retrieved prospectively collected frozen plasma samples from 163 stable CKD patients and 105 healthy controls. BNP, hsTnI and pG3 were assayed. pG3 was assessed for associations with age, gender, ethnicity, blood pressures; height, weight, body mass index (BMI), previously diagnosed CKD, diabetes, hypertension, coronary artery disease, estimated glomerular filtration rate (eGFR); C-reactive protein, beta-trace protein, 24 h urine protein, serum albumin, uric acid and cystatin C. We created two models predicting pG3 using multiple linear regression. Akaike Information Criterion (AIC) was used for comparison. Significance was taken at P < 0.05.

Results

CKD versus healthy participants: mean BMI (28.2 vs. 24.9 kg/m2), median serum creatinine (159 vs. 69 µmol/L; 1.8 vs. 0.78 mg/dL), median eGFR (49 vs. 104 mL/min/1.73m2), median pG3 (29.4 vs. 15.4 ng/mL), median BNP (136 vs. 23 pg/mL), and median hsTnI (12.5 vs. 2.6 pg/mL). By univariate analysis, all variables are associated with pG3 except weight, gender and diagnosis of cerebrovascular or peripheral vascular diseases. A parsimonious model selected for hsTnI, BMI, serum albumin, cystatin C and eGFR (AIC = 77.6).

Conclusion

BNP and hsTnI are associated with pG3 in Asian CKD patients. hsTnI is a better predictor of pG3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen SC, Kuo PL (2016) The Role of galectin-3 in the kidneys. Int J Mol Sci 17:565

    Article  CAS  Google Scholar 

  2. Davidson PJ, Davis MJ, Patterson RJ, Ripoche MA, Poirier F, Wang JL (2002) Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology 12:329–337

    Article  CAS  Google Scholar 

  3. Desmedt V, Desmedt S, Delanghe JR, Speeckaert R, Speeckaert MM (2016) Galectin-3 in renal pathology: more than just an innocent bystander. Am J Nephrol 43:305–317

    Article  CAS  Google Scholar 

  4. Hsu DK, Liu FT (2004) Regulation of cellular homeostasis by galectins. Glycoconj J 19:507–515

    Article  Google Scholar 

  5. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ (2009) Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail 11:811–817

    Article  CAS  Google Scholar 

  6. Henderson NC, Sethi T (2009) The regulation of inflammation by galectin-3. Immunol Rev 230:160–171

    Article  CAS  Google Scholar 

  7. Straube T, Elli AF, Greb C, Hegele A, Elsasser HP, Delacour D et al (2011) Changes in the expression and subcellular distribution of galectin-3 in clear cell renal cell carcinoma. J Exp Clin Cancer Res 30:89

    Article  CAS  Google Scholar 

  8. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP et al (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172:288–298

    Article  CAS  Google Scholar 

  9. Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT et al (2011) Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 300:F245–F253

    Article  CAS  Google Scholar 

  10. Prud'homme M, Coutrot M, Michel T, Boutin L, Genest M, Poirier F et al (2019) Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci 4:717–732

    Article  Google Scholar 

  11. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA et al (2013) Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol 33:67–75

    Article  CAS  Google Scholar 

  12. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B et al (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110:3121–3128

    Article  CAS  Google Scholar 

  13. Vergaro G, Prud'homme M, Fazal L, Merval R, Passino C, Emdin M et al (2016) Inhibition of galectin-3 pathway prevents isoproterenol-induced left ventricular dysfunction and fibrosis in mice. Hypertension 67:606–612

    Article  CAS  Google Scholar 

  14. Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B et al (2013) Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail 6:107–117

    Article  CAS  Google Scholar 

  15. Tang WH, Shrestha K, Shao Z, Borowski AG, Troughton RW, Thomas JD et al (2011) Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol 108:385–390

    Article  CAS  Google Scholar 

  16. Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL et al (2010) Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol 99:323–328

    Article  CAS  Google Scholar 

  17. Zamora E, Lupon J, de Antonio M, Galan A, Domingo M, Urrutia A et al (2014) Renal function largely influences Galectin-3 prognostic value in heart failure. Int J Cardiol 177:171–177

    Article  Google Scholar 

  18. Gopal DM, Kommineni M, Ayalon N, Koelbl C, Ayalon R, Biolo A et al (2012) Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc 1:e000760

    Article  CAS  Google Scholar 

  19. Drechsler C, Delgado G, Wanner C, Blouin K, Pilz S, Tomaschitz A et al (2015) Galectin-3, renal function, and clinical outcomes: results from the LURIC and 4D studies. J Am Soc Nephrol 26:2213–2221

    Article  CAS  Google Scholar 

  20. Bansal N, Hyre Anderson A, Yang W, Christenson RH, deFilippi CR, Deo R et al (2015) High-sensitivity troponin T and N-terminal pro-B-type natriuretic peptide (NT-proBNP) and risk of incident heart failure in patients with CKD: the chronic renal insufficiency cohort (CRIC) study. J Am Soc Nephrol 26:946–956

    Article  CAS  Google Scholar 

  21. Teo BW, Koh YY, Toh QC, Li J, Sinha AK, Shuter B et al (2014) Performance of the CKD-EPI creatinine-cystatin C glomerular filtration rate estimation equations in a multiethnic Asian population. Singapore Med J 55:656–659

    Article  Google Scholar 

  22. Teo BW, Xu H, Koh YY, Li J, Subramanian S, Sinha AK et al (2014) Glomerular filtration rates in healthy Asians without kidney disease. Nephrology 19:72–79

    Article  CAS  Google Scholar 

  23. Teo BW, Xu H, Wang D, Li J, Sinha AK, Shuter B et al (2011) GFR estimating equations in a multiethnic Asian population. Am J Kidney Dis 58:56–63

    Article  Google Scholar 

  24. Alam ML, Katz R, Bellovich KA, Bhat ZY, Brosius FC, de Boer IH et al (2019) Soluble ST2 and Galectin-3 and Progression of CKD. Kidney Int Rep 4:103–111

    Article  Google Scholar 

  25. Meijers WC, van der Velde AR, Ruifrok WP, Schroten NF, Dokter MM, Damman K et al (2014) Renal handling of galectin-3 in the general population, chronic heart failure, and hemodialysis. J Am Heart Assoc 3:e000962

    Article  CAS  Google Scholar 

  26. Rebholz CM, Selvin E, Liang M, Ballantyne CM, Hoogeveen RC, Aguilar D et al (2018) Plasma galectin-3 levels are associated with the risk of incident chronic kidney disease. Kidney Int 93:252–259

    Article  CAS  Google Scholar 

  27. Seliger SL, Hong SN, Christenson RH, Kronmal R, Daniels LB, Lima JAC et al (2017) High-sensitive cardiac troponin t as an early biochemical signature for clinical and subclinical heart Failure: MESA (multi-ethnic study of atherosclerosis). Circulation 135:1494–1505

    Article  CAS  Google Scholar 

  28. Siciliano M, Mettimano M, Dondolini-Poli A, Ballarin S, Migneco A, Annese R et al (2000) Troponin I serum concentration: a new marker of left ventricular hypertrophy in patients with essential hypertension. Ital Heart J 1:532–535

    PubMed  CAS  Google Scholar 

  29. Iliou MC, Fumeron C, Benoit MO, Tuppin P, Courvoisier CL, Calonge VM et al (2001) Factors associated with increased serum levels of cardiac troponins T and I in chronic haemodialysis patients: chronic haemodialysis and new cardiac markers evaluation (CHANCE) study. Nephrol Dial Transplant 16:1452–1458

    Article  CAS  Google Scholar 

  30. Freda BJ, Tang WH, Van Lente F, Peacock WF, Francis GS (2002) Cardiac troponins in renal insufficiency: review and clinical implications. J Am Coll Cardiol 40:2065–2071

    Article  CAS  Google Scholar 

  31. Mallamaci F, Zoccali C, Parlongo S, Tripepi G, Benedetto FA, Cutrupi S et al (2002) Troponin is related to left ventricular mass and predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis 40:68–75

    Article  CAS  Google Scholar 

  32. deFilippi C, Wasserman S, Rosanio S, Tiblier E, Sperger H, Tocchi M et al (2003) Cardiac troponin T and C-reactive protein for predicting prognosis, coronary atherosclerosis, and cardiomyopathy in patients undergoing long-term hemodialysis. JAMA 290:353–359

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the NUHS Clinician Scientist Program-Residency awarded to Dr Gek Cher Chan (2014). The Asian Kidney Disease Study and Singapore Kidney Function Study were funded in part by the National Medical Research Council (Blockvote), Ministry of Education Academic Research Fund Tier 1 (2008), and National Kidney Foundation Singapore (NKFRC/2011/07/21), by grants awarded to Dr Boon Wee Teo. Other members of the NUHS Nephrology Clinical Research Group who actively managed the databases and laboratory include Dr Hui Xu, Mr Qichun Toh, and Ms Sharon Saw.

Funding

This study was funded by the NUHS Clinician Scientist Program-Residency awarded to Dr Gek Cher Chan (2014). The Asian Kidney Disease Study and Singapore Kidney Function Study were funded in part by the National Medical Research Council (Blockvote), Ministry of Education Academic Research Fund Tier 1 (2008), and National Kidney Foundation Singapore (NKFRC/2011/07/21), by grants awarded to Dr Boon Wee Teo.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Gek Cher Chan, Jialiang Li, Boon Wee Teo; Methodology: Gek Cher Chan, Boon Wee Teo; Formal analysis and investigation: Gek Cher Chan, Peh Joo Ho, Jialiang Li, Boon Wee Teo; Writing–original draft preparation: Gek Cher Chan, Boon Wee Teo; Writing–review and editing: Gek Cher Chan, Peh Joo Ho, Jialiang Li, Evan Jon Choon Lee, Horng Ruey Chua, Titus Lau, Sunil Sethi, Boon Wee Teo; Fund acquisition: Gek Cher Chan, Boon Wee Teo; Resources: Evan Jon Choon Lee, Horng Ruey Chua, Titus Lau, Sunil Sethi, Boon Wee Teo; Supervision: Boon Wee Teo.

Corresponding author

Correspondence to Gek Cher Chan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The studies involving human participants were in accordance with the ethical standard of the institutional/national research committee (National Healthcare Group Domain Specific Review Board 2007/00225-SRF0004) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 137 kb)

Supplementary file1 (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, G.C., Ho, P.J., Li, J. et al. High-sensitivity Troponin I Predicts Galectin-3 in Chronic Kidney Disease Patients. Int Urol Nephrol 52, 533–540 (2020). https://doi.org/10.1007/s11255-020-02390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02390-5

Keywords

Navigation