Skip to main content
Log in

Kidney injury molecule-1, a sensitive and specific marker for identifying acute proximal tubular injury, can be used to predict renal functional recovery in native renal biopsies

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Kidney injury molecule-1 (KIM-1) staining has been shown to be very useful in identifying acute proximal tubular injury, but its sensitivity, specificity and predicting values for the recovery of renal function after injury in renal biopsies have not been well established. In the first study, we randomly selected 184 renal biopsies from a wide age range of patients (children to elderly) with various renal diseases. KIM-1 staining scores were significantly correlated with serum creatinine (sCr) levels (P < 0.05) in all age groups. Receiver-operating characteristic curve (ROC) was generated to evaluate true-positive rate (sensitivity) and true-negative rate (1-specificity). The area under the curve (AUC) in pediatric cases was 0.74, which demonstrated KIM-1 was a fair index in correlating with sCr. In adults, the AUC was 0.87, indicating that KIM-1 was an even better index in the adult population in correlating to sCr. The second study was to determine whether KIM-1 could be a potential predictor of the recovery of acute kidney injury (AKI), and 51 indicated native biopsies with acute tubular injury were randomly selected for KIM-1 staining and sCr follow-up over a 6-month period. A higher KIM-1/sCr ratio (0.57 ± 0.06) was significantly and positively associated with a better reduction in sCr over 6 months. In summary, our data demonstrated that KIM-1 staining in renal biopsies is a sensitive and specific marker to identify acute tubular injury and KIM-1/sCr ratio is useful for predicting the recovery of renal function after injury, although some patients’ sCr levels cannot return to their baseline levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avdagic N, Cosovic E, Nakas-Icindic E, Mornjakovic Z, Zaciragic A, Hadzovic-Dzuvo A (2008) Spirulina platensis protects against renal injury in rats with gentamicin-induced acute tubular necrosis. Bosn J Basic Med Sci 8(4):331–336. https://doi.org/10.17305/bjbms.2008.2892

    Article  PubMed  PubMed Central  Google Scholar 

  2. Islam SF, Hadiuzzaman KM, Islam MN, Khanam A, Faroque MO, Ahmed AH (2014) Role of protocol biopsy in early graft dysfunction in renal transplant recipient. Mymensingh Med J 23(2):286–289

    CAS  PubMed  Google Scholar 

  3. Tasdemir C, Tasdemir S, Vardi N, Ates B, Parlakpinar H, Kati B, Karaaslan MG, Acet A (2012) Protective effect of infliximab on ischemia/reperfusion-induced damage in rat kidney. Ren Fail 34(9):1144–1149. https://doi.org/10.3109/0886022X.2012.717490

    Article  CAS  PubMed  Google Scholar 

  4. Wang SY, Yang SX, Zhao XX, Chen F, Shi J (2017) Expression of the Wnt/beta-catenin signal pathway in patients with acute renal injury. Eur Rev Med Pharmacol Sci 21(20):4661–4667

    PubMed  Google Scholar 

  5. Parasuraman R, Wolforth SC, Wiesend WN, Dumler F, Rooney MT, Li W, Zhang PL (2013) Contribution of polyclonal free light chain deposition to tubular injury. Am J Nephrol 38(6):465–474. https://doi.org/10.1159/000356557

    Article  CAS  PubMed  Google Scholar 

  6. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62(1):237–244. https://doi.org/10.1046/j.1523-1755.2002.00433.x

    Article  CAS  PubMed  Google Scholar 

  7. Zhang PL, Rothblum LI, Han WK, Blasick TM, Potdar S, Bonventre JV (2008) Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int 73(5):608–614. https://doi.org/10.1038/sj.ki.5002697

    Article  CAS  PubMed  Google Scholar 

  8. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273(7):4135–4142

    Article  CAS  Google Scholar 

  9. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV (2008) Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 118(5):1657–1668. https://doi.org/10.1172/JCI34487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY, Hsiao LL, Ichimura T, Kuchroo V, Bonventre JV (2015) KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest 125(4):1620–1636. https://doi.org/10.1172/JCI75417

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yin W, Zhang PL, Macknis J, Lin F, Bonventre JV (2018) Kidney injury molecule-1 identifies antemortem injury in postmortem adult and fetal kidney. Am J Physiol Renal Physiol. https://doi.org/10.1152/ajprenal.00060.2018

    Article  PubMed  Google Scholar 

  12. van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJ, van Goor H, Stegeman CA (2007) Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 212(2):209–217. https://doi.org/10.1002/path.2175

    Article  CAS  PubMed  Google Scholar 

  13. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334(22):1448–1460. https://doi.org/10.1056/NEJM199605303342207

    Article  CAS  PubMed  Google Scholar 

  14. Kumar S (2018) Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int 93(1):27–40. https://doi.org/10.1016/j.kint.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  15. Rosen S, Stillman IE (2008) Acute tubular necrosis is a syndrome of physiologic and pathologic dissociation. J Am Soc Nephrol 19(5):871–875. https://doi.org/10.1681/ASN.2007080913

    Article  PubMed  Google Scholar 

  16. Rosen S, Heyman S (2018) Concerning cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int 94(1):218. https://doi.org/10.1016/j.kint.2018.04.001

    Article  PubMed  Google Scholar 

  17. Ichimura T, Brooks CR, Bonventre JV (2012) Kim-1/Tim-1 and immune cells: shifting sands. Kidney Int 81(9):809–811. https://doi.org/10.1038/ki.2012.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson RK, Sarmarapungavan D, Parasuraman RK, Maine G, Rooney MT, Wolforth SC, Reddy GH, Cohn SR, Dumler F, Rocher LL, Li W, Zhang PL (2013) Acute tubular injury is an important component in type I acute antibody-mediated rejection. Transpl Proc 45(9):3262–3268. https://doi.org/10.1016/j.transproceed.2013.05.012

    Article  CAS  Google Scholar 

  19. Cosner D, Zeng X, Zhang PL (2015) Proximal tubular injury in medullary rays is an early sign of acute tacrolimus nephrotoxicity. J Transplant 2015:142521. https://doi.org/10.1155/2015/142521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Doshi M, Khan S, Li W, Zhang PL (2015) Utility of iron staining in identifying the cause of renal allograft dysfunction in patients with sickle cell disease. Case Rep Transplant 2015:528792. https://doi.org/10.1155/2015/528792

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nepal M, Bock GH, Sehic AM, Schultz MF, Zhang PL (2008) Kidney injury molecule-1 expression identifies proximal tubular injury in urate nephropathy. Ann Clin Lab Sci 38(3):210–214

    PubMed  Google Scholar 

  22. Khademi M, Illes Z, Gielen AW, Marta M, Takazawa N, Baecher-Allan C, Brundin L, Hannerz J, Martin C, Harris RA, Hafler DA, Kuchroo VK, Olsson T, Piehl F, Wallstrom E (2004) T Cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol 172(11):7169–7176

    Article  CAS  Google Scholar 

  23. Xiao S, Brooks CR, Zhu C, Wu C, Sweere JM, Petecka S, Yeste A, Quintana FJ, Ichimura T, Sobel RA, Bonventre JV, Kuchroo VK (2012) Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc Natl Acad Sci USA 109(30):12105–12110. https://doi.org/10.1073/pnas.1120914109

    Article  PubMed  Google Scholar 

  24. Askenazi DJ, Koralkar R, Levitan EB, Goldstein SL, Devarajan P, Khandrika S, Mehta RL, Ambalavanan N (2011) Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatr Res 70(3):302–306. https://doi.org/10.1203/PDR.0b013e3182275164

    Article  PubMed  PubMed Central  Google Scholar 

  25. Askenazi DJ, Montesanti A, Hunley H, Koralkar R, Pawar P, Shuaib F, Liwo A, Devarajan P, Ambalavanan N (2011) Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J Pediatr 159(6):907.e901–912.e901. https://doi.org/10.1016/j.jpeds.2011.05.045

    Article  CAS  Google Scholar 

  26. Bonventre JV (2009) Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant 24(11):3265–3268. https://doi.org/10.1093/ndt/gfp010

    Article  CAS  PubMed  Google Scholar 

  27. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV (2004) Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286(3):F552–563. https://doi.org/10.1152/ajprenal.00285.2002

    Article  CAS  PubMed  Google Scholar 

  28. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, Bonventre JV (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 73(7):863–869. https://doi.org/10.1038/sj.ki.5002715

    Article  CAS  PubMed  Google Scholar 

  29. Humphreys BD, Xu F, Sabbisetti V, Grgic I, Movahedi Naini S, Wang N, Chen G, Xiao S, Patel D, Henderson JM, Ichimura T, Mou S, Soeung S, McMahon AP, Kuchroo VK, Bonventre JV (2013) Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 123(9):4023–4035. https://doi.org/10.1172/JCI45361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin W, Naini SM, Chen G, Hentschel DM, Humphreys BD, Bonventre JV (2016) Mammalian target of rapamycin mediates kidney injury molecule 1-dependent tubule injury in a surrogate model. J Am Soc Nephrol 27(7):1943–1957. https://doi.org/10.1681/ASN.2015050500

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate excellent technical support from Ms. Sharon K. Hicks.

Funding

This study was not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping L. Zhang.

Ethics declarations

Conflict of interest

None of the authors has financial disclosure to claim and there is no conflict of interest among the authors.

Ethical approval

All the procedures performed in studies involving human participants (approved by Institutional Research Board of Beaumont Health System, Michigan) were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Human and animal rights

No animal work is involved in the study.

Informed consent

Not applicable for the retrospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Kumar, T., Lai, Z. et al. Kidney injury molecule-1, a sensitive and specific marker for identifying acute proximal tubular injury, can be used to predict renal functional recovery in native renal biopsies. Int Urol Nephrol 51, 2255–2265 (2019). https://doi.org/10.1007/s11255-019-02311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02311-1

Keywords

Navigation