Skip to main content

Advertisement

Log in

Calcitriol and FGF-23, but neither PTH nor sclerostin, are associated with calciuria in CKD

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

The recent observation that urinary calcium excretion (UCE) drops considerably with CKD and that this effect may occur beyond compensation for reduced intestinal calcium absorption suggests that CKD per se is a state of sustained positive calcium balance, a mechanism likely to contribute to vascular calcification and CVD in CKD. However, the determinants of UCE reduction in CKD are not well understood and there is a lack of clinical studies, particularly in the CKD population. Therefore, in this study, we aimed to evaluate variables associated with UCE in a CKD cohort.

Methods

Baseline data on 356 participants of the Progredir Study, Sao Paulo, Brazil, essentially composed of CKD G3a–G4, were analyzed according to UCE (24 h urine collection).

Results

Median 24 h UCE was 38 mg/day (IQR 21–68 mg/day) and 0.48 mg/kg/day (IQR 0.28–0.82 mg/kg/day). In univariate analysis, UCE was inversely related to age, phosphorus, 1-84 PTH, FGF-23 and sclerostin, and positively associated with eGFR, DBP, 1,25(OH)2-vitamin D, calcium, bicarbonate, total calorie intake and spironolactone use. After adjustments for age, sex and eGFR, only 1,25(OH)2-vitamin D, calcium, FGF-23, bicarbonate and total calorie intake remained associated with it, but not PTH nor sclerostin. Lastly, in a multivariable model, eGFR, serum 1,25(OH)2-vitamin D, calcium, and FGF-23 remained associated with UCE. Similar results were observed when calcium fractional excretion was used instead of UCE, with eGFR, 1-25-vitamin D and FGF-23 remaining as independent associations.

Conclusion

Our results showed that CKD is associated with very low levels of UCE and that 1,25(OH)2-vitamin D, serum calcium and FGF-23 were independently associated with UCE in this population, raising the question whether these factors are modulators of the tubular handling of calcium in CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. KDIGO clinical practice guideline for the diagnosis (2009) Evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD–MBD). Kidney Int Suppl 113:S1–S130

    Google Scholar 

  2. Russo D, Corrao S, Battaglia Y, Andreucci M, Caiazza A, Carlomagno A et al (2011) Progression of coronary artery calcification and cardiac events in patients with chronic renal disease not receiving dialysis. Kidney Int 80(1):112–118

    Article  CAS  Google Scholar 

  3. Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM (2001) Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension (Dallas, Tex: 1979) 38(4):938–942

    Article  CAS  Google Scholar 

  4. Massy ZA, Mentaverri R, Mozar A, Brazier M, Kamel S (2008) The pathophysiology of vascular calcification: are osteoclast-like cells the missing link? Diabetes Metab 34(Suppl 1):S16–S20

    Article  Google Scholar 

  5. Moe SM (2017) Calcium as cardiovascular toxin in CKD-MBD. Bone 100:94–99

    Article  CAS  Google Scholar 

  6. Hill KM, Martin BR, Wastney ME, McCabe GP, Moe SM, Weaver CM et al (2013) Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease. Kidney Int 83(5):959–966

    Article  CAS  Google Scholar 

  7. Spiegel DM, Brady K (2012) Calcium balance in normal individuals and in patients with chronic kidney disease on low- and high-calcium diets. Kidney Int 81(11):1116–1122

    Article  CAS  Google Scholar 

  8. Isakova T, Anderson CA, Leonard MB, Xie D, Gutierrez OM, Rosen LK et al (2011) Diuretics, calciuria and secondary hyperparathyroidism in the chronic renal insufficiency cohort. Nephrol Dialysis Transpl 26(4):1258–1265

    Article  CAS  Google Scholar 

  9. Vasco RF, Moyses RM, Zatz R, Elias RM (2016) Furosemide increases the risk of hyperparathyroidism in chronic kidney disease. Am J Nephrol 43(6):421–430

    Article  CAS  Google Scholar 

  10. Coburn JW, Koppel MH, Brickman AS, Massry SG (1973) Study of intestinal absorption of calcium in patients with renal failure. Kidney Int 3(4):264–272

    Article  CAS  Google Scholar 

  11. Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R et al (2014) FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 33(3):229–246

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar R, Vallon V (2014) Reduced renal calcium excretion in the absence of sclerostin expression: evidence for a novel calcium-regulating bone kidney axis. J Am Soc Nephrol 25(10):2159–2168

    Article  CAS  Google Scholar 

  13. Domingos MAM, Goulart AC, Lotufo PA, Bensenor IJM (2017) Titan SMO Chronic kidney disease—determinants of progression and cardiovascular risk PROGREDIR cohort study: design and methods. Sao Paulo Med J Revista Paulista de Med 135(2):133–139

    Article  Google Scholar 

  14. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  Google Scholar 

  15. Coyne D, Acharya M, Qiu P, Abboud H, Batlle D, Rosansky S et al (2006) Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. Am J Kidney Dis 47(2):263–276

    Article  CAS  Google Scholar 

  16. Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L et al (2010) Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol 5(2):286–291

    Article  CAS  Google Scholar 

  17. Taylor EN, Curhan GC (2009) Demographic, dietary, and urinary factors and 24-h urinary calcium excretion. Clin J Am Soc Nephrol 4(12):1980–1987

    Article  CAS  Google Scholar 

  18. Lambers TT, Bindels RJ, Hoenderop JG (2006) Coordinated control of renal Ca2 + handling. Kidney Int 69(4):650–654

    Article  CAS  Google Scholar 

  19. Bindels RJ, Hartog A, Timmermans J, Van Os CH (1991) Active Ca2 + transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am J Physiol 261(5 Pt 2):F799–F807

    CAS  PubMed  Google Scholar 

  20. Hoenderop JG, Dardenne O, Van Abel M, Van Der Kemp AW, Van Os CH, St -Arnaud R et al (2002) Modulation of renal Ca2 + transport protein genes by dietary Ca2 + and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3–1alpha-hydroxylase knockout mice. FASEB J 16(11):1398–1406

    Article  CAS  Google Scholar 

  21. Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ (2003) Localization and regulation of the epithelial Ca2 + channel TRPV6 in the kidney. J Am Soc Nephrol 14(11):2731–2740

    Article  CAS  Google Scholar 

  22. Kladnitsky O, Rozenfeld J, Azulay-Debby H, Efrati E, Zelikovic I (2015) The claudin-16 channel gene is transcriptionally inhibited by 1,25-dihydroxyvitamin D. Exp Physiol 100(1):79–94

    Article  CAS  Google Scholar 

  23. van Abel M, Hoenderop JG, van der Kemp AW, Friedlaender MM, van Leeuwen JP, Bindels RJ (2005) Coordinated control of renal Ca(2 +) transport proteins by parathyroid hormone. Kidney Int 68(4):1708–1721

    Article  Google Scholar 

  24. Kaplan RA, Snyder WH, Stewart A, Pak CY (1976) Metabolic effects of parathyroidectomy in asymptomatic primary hyperparathyroidism. J Clin Endocrinol Metab 42(3):415–426

    Article  CAS  Google Scholar 

  25. Dhayat NA, Ackermann D, Pruijm M, Ponte B, Ehret G, Guessous I et al (2016) Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function. Kidney Int 90(3):648–657

    Article  CAS  Google Scholar 

  26. Mitchell DM, Juppner H, Burnett-Bowie SM (2017) FGF23 is not associated with age-related changes in phosphate, but enhances renal calcium reabsorption in girls. J Clin Endocrinol Metab 102(4):1151–1160

    Article  Google Scholar 

  27. Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro-o M et al (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22(1):124–136

    Article  CAS  Google Scholar 

  28. Asai O, Nakatani K, Tanaka T, Sakan H, Imura A, Yoshimoto S et al (2012) Decreased renal alpha-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int 81(6):539–547

    Article  CAS  Google Scholar 

  29. Ryan ZC, Ketha H, McNulty MS, McGee-Lawrence M, Craig TA, Grande JP et al (2013) Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci USA 110(15):6199–6204

    Article  CAS  Google Scholar 

  30. Blaine J, Chonchol M, Levi M (2015) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 10(7):1257–1272

    Article  CAS  Google Scholar 

  31. Hyun YY, Lee KB, Oh KH, Ahn C, Park SK, Chae DW et al (2017) Serum adiponectin and protein-energy wasting in predialysis chronic kidney disease. Nutrition (Burbank, Los Angeles County, Calif). 33:254–260

    Article  CAS  Google Scholar 

  32. Ortega Moreno L, Lamacchia O, Copetti M, Salvemini L, De Bonis C, De Cosmo S et al (2015) Serum adiponectin and glomerular filtration rate in patients with type 2 diabetes. PLoS One 10(10):e0140631

    Article  Google Scholar 

  33. Rutkowski JM, Pastor J, Sun K, Park SK, Bobulescu IA, Chen CT et al (2017) Adiponectin alters renal calcium and phosphate excretion through regulation of Klotho expression. Kidney Int 91(2):324–337

    Article  CAS  Google Scholar 

  34. Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N (2010) Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 25(8):1711–1723

    Article  CAS  Google Scholar 

  35. Spoto B, Pizzini P, Tripepi G, Mallamaci F, Zoccali C (2018) Circulating adiponectin modifies the FGF23 response to vitamin D receptor activation: a post hoc analysis of a double-blind, randomized clinical trial. Nephrol Dialysis Transpl 33(10):1764–1769

    Article  CAS  Google Scholar 

  36. Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85(4):825–836

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DiaSorin, Minnesota, USA, performed pro-bono the 1,25(OH)2D, 25-OH-vitamin D, 1-84 PTH, and FGF-23 measurements and did not interfere in any process of this manuscript. This study was supported by FAPESP and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ramalho.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Ethical statement

All subjects included in this study have given informed written consent, and the study protocol was approved by two local Ethics Committees (Ethics in Research Committee—University Hospital, Sao Paulo University, no. 11,147/11; and Ethics Commission for Analysis of Research Projects, Hospital das Clínicas, Medical School, Sao Paulo University, no. 0798/11).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalho, J., Petrillo, E.M., Takeichi, A.P.M. et al. Calcitriol and FGF-23, but neither PTH nor sclerostin, are associated with calciuria in CKD. Int Urol Nephrol 51, 1823–1829 (2019). https://doi.org/10.1007/s11255-019-02215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02215-0

Keywords

Navigation