Skip to main content

Advertisement

Log in

The value of the Brazilian açai fruit as a therapeutic nutritional strategy for chronic kidney disease patients

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Açai (Euterpe oleracea Mart.) fruit from the Amazon region in Brazil contains bioactive compounds such as α-tocopherol, anthocyanins (cyanidin 3-glycoside and cyanidin 3-rutinoside), and other flavonoids with antioxidant and anti-inflammatory properties. Moreover, the prebiotic activity of anthocyanins in modulating the composition of gut microbiota has emerged as an additional mechanism by which anthocyanins exert health-promoting effects. Açai consumption may be a nutritional therapeutic strategy for chronic kidney disease (CKD) patients since these patients present with oxidative stress, inflammation, and dysbiosis. However, the ability of açai to modulate these conditions has not been studied in CKD, and this review presents recent information about açai and its possible therapeutic effects in CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Heinrich M, Dhanji T, Casselman I (2011) Açai (Euterpe oleracea Mart.): a phytochemical and pharmacological assessment of the species’ health claims. Phytochem Lett 4:10–21

    CAS  Google Scholar 

  2. Torres T, Farah A (2017) Coffee, maté, açai and beans are the main contributors to the antioxidant capacity of Brazilian´s diet. Eur J Nutr 56(4):1523–1533

    CAS  PubMed  Google Scholar 

  3. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM (2002) The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 62(5):1524–1538

    CAS  PubMed  Google Scholar 

  4. Kuo KL, Hung SC, Wei YH, Tarng DC (2008) Intravenous iron exacerbates oxidative DNA damage in peripheral blood lymphocytes in chronic hemodialysis patients. J Am Soc Nephrol 19(9):1817–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Costa-Hong V, Bortolotto LA, Jorgetti V et al (2009) Oxidative stress and endothelial dysfunction in chronic kidney disease. Arq Bras Cardiol 92(5):381–386

    PubMed  Google Scholar 

  6. Mekki K, Taleb W, Bouzidi N, Kaddous A, Bouchenak M (2010) Effect of hemodialysis and peritoneal dialysis on redox status in chronic renal failure patients: a comparative study. Lipids Health Dis 9:93

    PubMed  PubMed Central  Google Scholar 

  7. Rangel-López A, Paniagua-Medina ME, Urbán-Reyes M et al (2013) Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: a comparative study. Mutagenesis 28(2):219–225

    PubMed  PubMed Central  Google Scholar 

  8. Pedruzzi LM, Cardozo LF, Daleprane JB et al (2015) Systemic inflammation and oxidative stress in hemodialysis patients are associated with down-regulation of Nrf2. J Nephrol 28(4):495–501

    CAS  PubMed  Google Scholar 

  9. Zargari M, Sedighi O (2015) Influence of hemodialysis on lipid peroxidation, enzymatic and non-enzymatic antioxidant capacity in chronic renal failure patients. Nephrourol Mon 7(4):e28526

    PubMed  PubMed Central  Google Scholar 

  10. Jun M, Zhu B, Tonelli M et al (2012) Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol 60(20):2061–2071

    CAS  PubMed  Google Scholar 

  11. Dahwa R, Fassett RG, Wang Z, Briskey D, Mallard AR, Coombes JS (2014) Variability of oxidative stress biomarkers in hemodialysis patients. Biomarkers 19(2):154–158

    CAS  PubMed  Google Scholar 

  12. Esgalhado M, Stenvinkel P, Mafra D (2017) Nonpharmacologic strategies to modulate nuclear factor erythroid 2-related factor 2 pathway in chronic kidney disease. J Ren Nutr 27(4):282–291

    CAS  PubMed  Google Scholar 

  13. Bichara CMG, Rogez H (2012) Açai (Euterpe oleracea Mart.). In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits: açai to citrus, 7th edn. Woodhead Publishing, Cambridge, pp 1–26

    Google Scholar 

  14. Dayem AA, Choi HY, Yang G-Mo, Kim K, Saha SK, Cho SG (2016) The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: molecular mechanisms. Nutrients 8(9):581

    Google Scholar 

  15. Wallace TC, Giusti MM (2014) Anthocyanins in health and disease. Taylor & Francis Group, Boca Raton

    Google Scholar 

  16. Chinese Nutrition Society (2013) Chinese DRIs handbook. Standards Press of China, Beijing

    Google Scholar 

  17. Fernandes I, Marques F, Freitas V de, Mateus N (2013) Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food Chem 141(3):2923–2933

    CAS  PubMed  Google Scholar 

  18. Czank C, Cassidy A, Zhang Q et al (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr 97:995–1003

    CAS  PubMed  Google Scholar 

  19. Fang J (2014) Bioavailability of anthocyanins. Drug Metab Rev 46(4):508–520

    Google Scholar 

  20. Tsuda T (2016) Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants (Basel) 5(2):13

    Google Scholar 

  21. Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57(15):6485–6501

    CAS  PubMed  Google Scholar 

  22. Blum HE (2017) The human microbiome. Adv Med Sci 62(2):414–420

    PubMed  Google Scholar 

  23. Tanca A, Abbondio M, Palomba A, Fraumene C, Manghina V, Cucca F, Fiorillo E, Uzzau S (2017) Potential and active functions in the gut microbiota of a healthy human cohort. Microbiome 5(1):79

    PubMed  PubMed Central  Google Scholar 

  24. Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP (2013) Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 61(40):9517–9533

    CAS  PubMed  Google Scholar 

  25. Esposito D, Damsud T, Wilson M et al (2015) Black currant anthocyanins attenuate weight gain and improve glucose metabolism in diet-induced obese mice with intact, but not disrupted, gut microbiome. J Agric Food Chem 63:6172–6180

    CAS  PubMed  Google Scholar 

  26. Overall J, Bonney SA, Wilson M et al (2017) Metabolic effects of berries with structurally diverse anthocyanins. Int J Mol Sci 18(2)

    PubMed Central  Google Scholar 

  27. Jamar G, Estadella D, Pisani LP (2017) Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors 43(4):507–516

    CAS  PubMed  Google Scholar 

  28. Sadowska-Krępa E, Kłapcińska B, Podgórski T, Szade B, Tyl K, Hadzik A (2015) Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study. Biol Sport 32(2):161–168

    PubMed  PubMed Central  Google Scholar 

  29. Smeriglio A, Barreca D, Bellocco E, Trombetta D (2016) Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res 30(8):1265–1286

    CAS  PubMed  Google Scholar 

  30. Cordeiro VCS, Carvalho CRML., Bem GF de et al (2007) Euterpe oleracea Mart. extract prevents vascular remodeling and endothelial dysfunction in spontaneously hypertensive rats. Int J Appl Res Nat Prod 8(3):6–16

    Google Scholar 

  31. Souza MO, Silva M, Silva ME, Oliveira RP, Pedrosa ML (2010) Diet supplementation with açai (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats. Nutrition 26(7–8):804–810

    PubMed  Google Scholar 

  32. El Morsy EM, Ahmed MA, Ahmed AA (2015) Attenuation of renal ischemia/reperfusion injury by açai extract preconditioning in a rat model. Life Sci 5(123):35–42

    Google Scholar 

  33. Guerra JFdaC, Maciel PS, Abreu ICME. de et al (2015) Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J Funct Foods 14:192–202

    CAS  Google Scholar 

  34. Oyama LM, Silva FP, Carnier J et al (2016) Juçara pulp supplementation improves glucose tolerance in mice. Diabetol Metab Syndr 22(8):8

    Google Scholar 

  35. Fairlie-Jones L, Davison K, Fromentin E, Hill AM (2017) The effect of anthocyanin-rich foods or extracts on vascular function in adults: a systematic review and meta-analysis of randomised controlled trials. Nutrients 20(8):9

    Google Scholar 

  36. Heyman L, Axling U, Blanco N, Sterner O, Holm C, Berger K (2014) Evaluation of beneficial metabolic effects of berries in high-fat fed C57BL/6J mice. J Nutr Metab 403041

  37. Heyman-Lindén L, Kotowska D, Sand E et al (2016) Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food Nutr Res 60:29993

    PubMed  Google Scholar 

  38. Frank T, Netzel M, Strass G, Bitsch R, Bitsch I (2003) Can Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. J Physiol Pharmacol 81:423–435

    CAS  Google Scholar 

  39. Speciale A, Canali R, Chirafisi J, Saija A, Virgili F, Cimino F (2010) Cyanidin-3-O-glucoside protection against TNF-r-induced endothelial dysfunction: involvement of nuclear factor-KB signaling. J Agric Food Chem 58:12048–12054

    CAS  PubMed  Google Scholar 

  40. Ramyaa P, Krishnaswamy R, Padmaa VV (2014) Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells: up regulation of Nrf2 expression and down regulation of NF-κB and COX-2. Biochim Biophys Acta 1840(1):681–692

    CAS  PubMed  Google Scholar 

  41. Ferrari D, Speciale A, Mariateresa C, Fratantonio D, Molonia MS, Ranaldi G, Saija A, Cimino F (2016) Cyanidin-3-O-glucoside inhibits NF-κB signalling in intestinal epithelial cells exposed to TNF-κ and exerts protective effects via Nrf2 pathway activation. Toxicol Lett 15(264):51–58

    Google Scholar 

  42. Ma MM, Li Y, Liu XY, Zhu WW, Ren X, Kong GQ, Huang X, Wang LP, Luo LQ, Wang XZ (2015) Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-κB and MAPK pathways. Inflammation 38(4):1669–1682

    CAS  PubMed  Google Scholar 

  43. Xie X, Zhao R, Garry X, Shen J (2012) Influence of delphinidin-3-glucoside on oxidized low-density lipoprotein-induced oxidative stress and apoptosis in cultured endothelial cells. Agric Food Chem 60:1850–1856

    CAS  Google Scholar 

  44. Kukongviriyapan U, Sompamit K, Pannangpetch P, Kukongviriyapan V, Can WD (2012) Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. J Physiol Pharmacol 90:1345–1353

    CAS  Google Scholar 

  45. Abd El-Aziz TA, Mohamed RH, Pasha HF, Abdel-Aziz HR (2012) Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin Exp Med 12:233–240

    CAS  PubMed  Google Scholar 

  46. Chander V, Chopra K (2005) Role of nitric oxide in resveratrol-induced renal protective effects of ischemic preconditioning. J Vasc Surg 42(6):1198–1205

    PubMed  Google Scholar 

  47. Dianat M, Radmanesh E, Badavi MSE, Goudarzi G (2016) Disturbance effects of PM10 on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia–reperfusion injury in isolated rat heart: protective role of vanillic acid. Environ Sci Pollut Res 23(6):5154–5165

    CAS  Google Scholar 

  48. Tanigawa T, Kanazawa S, Ichibori R, Fujiwara T, Magome T, Shingaki K, Miyata S (2014) (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis. BMC Complement Altern Med 8(14):133

    Google Scholar 

  49. Arumugam S, Thandavarayan RA, Arozal W, Sari FR, Giridharan VV, Soetikno V, Palaniyandi SS (2012) Quercetin offers cardioprotection against progression of experimental autoimmune myocarditis by suppression of oxidative and endoplasmic reticulum stress via endothelin-1/MAPK signaling. Free Radic Res 46(2):154–163

    CAS  PubMed  Google Scholar 

  50. Lee DE, Chung MY, Lim TG, Huh WB, Lee HJ, Lee KW (2013) Quercetin suppresses intracellular ROS formation, MMP activation, and cell motility in human fibrosarcoma cells. Food Sci 78(9):H1464-9

    Google Scholar 

  51. Lin W-Chieh, Yu-Fen P, Chien-Wei H (2015) Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways. Iran J Basic Med Sci 18:478–484

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812(7):719–731

    CAS  PubMed  Google Scholar 

  53. Li J, Li L, Wanga S, Zhanga C, Zhenga L, Jia Y, Xua M, Zhu T (2018) Resveratrol alleviates inflammatory responses and oxidative stress in rat kidney ischemia-reperfusion injury and H2O2-Induced NRK-52E Cells via the Nrf2/ TLR4/NF-κB pathway. Cell Physiol Biochem 45:1677–1689

    CAS  PubMed  Google Scholar 

  54. Poulose SM, Bielinski DF, Carey A, Schauss AG, Shukitt-Hale B (2017) Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açai-enriched diets. Nutr Neurosci 20(5):305–315

    CAS  PubMed  Google Scholar 

  55. Costa CA de, Ognibene DT, Cordeiro VSC et al (2017) Effect of Euterpe oleracea Mart. Seeds extract on chronic ischemic renal injury in renovascular hypertensive rats. J Med Food 1–9

  56. Rocha AP, Carvalho LC, Sousa MA et al (2007) Endothelium-dependent vasodilator effect of Euterpe oleracea Mart. (açai) extracts in mesenteric vascular bed of the rat. Vascul Pharmacol 46(2):97–104

    CAS  PubMed  Google Scholar 

  57. Noratto GD, Angel-Morales G, Talcott ST, Mertens-Talcott SU (2011) Polyphenolics from açaí (Euterpe oleracea Mart.) and red muscadine grape (Vitis rotundifolia) protect human umbilical vascular Endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126. J Agric Food Chem 59(14):7999–8012

    CAS  PubMed  Google Scholar 

  58. Spada PD, Dani C, Bortolini GV, Funchal C, Henriques JA, Salvador M (2009) Frozen fruit pulp of Euterpe oleraceae Mart. (Acai) prevents hydrogen peroxide-induced damage in the cerebral cortex, cerebellum, and hippocampus of rats. J Med Food 12(5):1084–1088

    CAS  PubMed  Google Scholar 

  59. Poulose SM, Fisher DR, Larson J et al (2012) Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Food Chem 60(4):1084–1093

    CAS  PubMed  Google Scholar 

  60. Wong DY, Musgrave IF, Harvey BS, Smid SD (2013) Açai (Euterpe oleraceae Mart.) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro. Neurosci Lett 556:221–226

    CAS  PubMed  Google Scholar 

  61. Silva Santos V, Bisen-Hersh E, Yu Y et al (2014) Anthocyanin-rich açai (Euterpe oleracea Mart.) extract attenuates manganese-induced oxidative stress in rat primary astrocyte cultures. J Toxicol Environ Health 77(7):390–404

    Google Scholar 

  62. Torma PD, Brasil AV, Carvalho AV et al (2017) Hydroethanolic extracts from different genotypes of açai (Euterpe oleracea) presented antioxidant potential and protected human neuron-like cells (SH-SY5Y). Food Chem 222:94–104

    CAS  PubMed  Google Scholar 

  63. Sun X, Seeberger J, Alberico T et al (2010) Açai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 45(3):243–251

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vrailas-Mortimer A, Gomez R, Dowse H, Sanyal S (2012) A survey of the protective effects of some commercially available antioxidant supplements in genetically and chemically induced models of oxidative stress in Drosophila melanogaster. Exp Gerontol 47(9):712–722

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Horiguchi T, Ishiguro N, Chihara K et al (2011) Inhibitory effect of açaí (Euterpe oleracea Mart.) pulp on IgE-mediated mast cell activation. J Agric Food Chem 59(10):5595–5601

    CAS  PubMed  Google Scholar 

  66. Silva DF, Vidal FC, Santos D et al (2014) Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines. BMC Complement Altern Med 14:175

    PubMed  PubMed Central  Google Scholar 

  67. Freitas DDS, Morgado-Díaz JA, Gehren AS et al (2017) Cytotoxic analysis and chemical characterization of fractions of the hydroalcoholic extract of the Euterpe oleracea Mart. seed in the MCF-7 cell line. J Pharm Pharmacol 69(6):714–721

    CAS  PubMed  Google Scholar 

  68. Xie C, Kang J, Li Z et al (2012) The açai flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-κ and IL-6 production through inhibiting NF-κB activation and MAPK pathway. J Nutr Biochem 23(9):1184–1191

    CAS  PubMed  Google Scholar 

  69. Alqurashi RM, Alarifi SN, Walton GE, Costabile AF, Rowland IR, Commane DM (2017) In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chem 234:190–198

    CAS  PubMed  Google Scholar 

  70. Bonomo LdeF, Silva DN, Boasquivis PF et al (2014) Açai (Euterpe oleracea Mart.) modulates oxidative stress resistance in Caenorhabditis elegans by direct and indirect mechanisms. PLoS ONE 9(3):e89933

    PubMed Central  Google Scholar 

  71. Peixoto H, Roxo M, Kristin S, Röhrig T, Richling E, Wink M (2016) An anthocyanin-rich extract of acai (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. J Agric Food Chem 64(6):1283–1290

    CAS  PubMed  Google Scholar 

  72. Brito C, Stavroullakis AT, Ferreira AC et al (2016) Extract of acai-berry inhibits osteoclast differentiation and activity. Arch Oral Biol 68:29–34

    CAS  PubMed  Google Scholar 

  73. Petruk G, Illiano A, Del Giudice R et al (2017) Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. J Photochem Photobiol B 172:42–51

    CAS  PubMed  Google Scholar 

  74. Kang MH, Choi S, Kim BH (2017) Skin wound healing effects and action mechanism of acai berry water extracts. Toxicol Res 33(2):149–156

    PubMed  PubMed Central  Google Scholar 

  75. Guerra JF, Magalhães CL, Costa DC, Silva ME, Pedrosa ML (2011) Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats. J Clin Biochem Nutr 49(3):188–1 94

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Xie C, Kang J, Burris R et al (2011) Açai juice attenuates atherosclerosis in ApoE deficient mice through antioxidant and anti-inflammatory activities. Atherosclerosis 216(2):327–333

    CAS  PubMed  Google Scholar 

  77. Moura RS, Pires KM, Santos Ferreira T et al (2011) Addition of açai (Euterpe oleracea) to cigarettes has a protective effect against emphysema in mice. Food Chem Toxicol 49(4):55–63

    Google Scholar 

  78. Kim JY, Hong JH, Jung HK, Jeong YS, Cho KH (2012) Grape skin and loquat leaf extracts and acai puree have potent anti-atherosclerotic and anti-diabetic activity in vitro and in vivo in hypercholesterolemic zebrafish. Int J Mol Med 30(3):606–614

    CAS  PubMed  Google Scholar 

  79. Moura RS, Ferreira TS, Lopes AA et al (2012) Effects of Euterpe oleracea Mart. (açai) extract in acute lung inflammation induced by cigarette smoke in the mouse. Phytomedicine 19(3–4):262–269

    PubMed  Google Scholar 

  80. Costa CA, de Oliveira PR, de Bem GF et al (2012) Euterpe oleracea Mart.-derived polyphenols prevent endothelial dysfunction and vascular structural changes in renovascular hypertensive rats: role of oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 385(12):1199–1209

    CAS  PubMed  Google Scholar 

  81. Feio CA, Izar MC, Ihara SS et al (2012) Euterpe oleracea (açai) modifies sterol metabolism and attenuates experimentally-induced atherosclerosis. J Atheroscler Thromb 19(3):237–245 (2012)

    PubMed  Google Scholar 

  82. Fragoso MF, Prado MG, Barbosa L, Rocha NS, Barbisan LF (2012) Inhibition of mouse urinary bladder carcinogenesis by açai fruit (Euterpe oleraceae Mart.) intake. Plant Foods Hum Nutr 67(3):235 – 41

    CAS  PubMed  Google Scholar 

  83. Souza MO, Souza EL, de Brito Magalhães CL et al (2012) The hypocholesterolemic activity of açai (Euterpe oleracea Mart.) is mediated by the enhanced expression of the ATP-binding cassette, subfamily G transporters 5 and 8 and low-density lipoprotein receptor genes in the rat. Nutr Res 32(12):976–984

    PubMed  Google Scholar 

  84. Fragoso MF, Romualdo GR, Ribeiro DA, Barbisan LF (2013) Açai (Euterpe oleracea Mart.) feeding attenuates dimethylhydrazine-induced rat colon carcinogenesis. Food Chem Toxicol 58:68–76

    CAS  PubMed  Google Scholar 

  85. Castro CA, Natali AJ, Cardoso LM et al (2014) Aerobic exercise and not a diet supplemented with jussara açai (Euterpe edulis Martius) alters hepatic oxidative and inflammatory biomarkers in ApoE-deficient mice. Br J Nutr 112(3):285–294

    PubMed  Google Scholar 

  86. Laslo M, Sun X, Hsiao CT, Wu WW, Shen RF, Zou S (2013) A botanical containing freeze dried açai pulp promotes healthy aging and reduces oxidative damage in sod1 knockdown flies. Age (Dordr) 35(4):1117–1132

    CAS  Google Scholar 

  87. Bem GF, da Costa CA, de Oliveira PR et al (2014) Protective effect of Euterpe oleracea Mart (açai) extract on programmed changes in the adult rat offspring caused by maternal protein restriction during pregnancy. J Pharm Pharmacol 66(9):1328–1338

    PubMed  Google Scholar 

  88. Unis A (2015) Açai berry extract attenuates glycerol-induced acute renal failure in rats. Ren Fail 37(2):310–317

    PubMed  Google Scholar 

  89. Poulose SM, Fisher DR, Bielinski DF et al (2014) Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich açai (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutrition 30(7–8):853–862

    Google Scholar 

  90. Qu SS, Zhang JJ, Li YX, Zheng Y, Zhu YL, Wang LY (2014) Protective effect of Acai berries on chronic alcoholic hepatic injury in rats and their effect on inflammatory cytokines. Zhongguo Zhong Yao Za Zhi 39(24):4869–4872

    PubMed  Google Scholar 

  91. Sudo RT, Neto ML, Monteiro CE et al (2015) Antinociceptive effects of hydroalcoholic extract from Euterpe oleracea Mart. (açai) in a rodent model of acute and neuropathic pain. BMC Complement Altern Med 15(2):208

    PubMed  PubMed Central  Google Scholar 

  92. Kim H, Simbo S, Chown J et al (2015) The consumption of acai beverage (Euterpe oleracea Mart.) improves biomarkers for inflammation in individuals with the metabolic syndrome. FASEB J 29(1):259–264

    Google Scholar 

  93. Souza-Monteiro JR, Hamoy M, Santana-Coelho D et al (2015) Anticonvulsant properties of Euterpe oleracea in mice. Neurochem Int 90:20–27

    CAS  PubMed  Google Scholar 

  94. Oliveira PR, da Costa CA, de Bem GF et al (2015) Euterpe oleracea Mart.-derived polyphenols protect mice from diet-induced obesity and fatty liver by regulating hepatic lipogenesis and cholesterol excretion. PLoS ONE 10(12):e0143721

    PubMed  PubMed Central  Google Scholar 

  95. Marques CL, Dias NR, Castro AC et al (2015) Chemical composition, characterization of anthocyanins and antioxidant potential of Euterpe edulis fruits: applicability on genetic dyslipidemia and hepatic steatosis in mice. Nutr Hosp 32(2):702–709

    Google Scholar 

  96. Souza Machado F, Marinho JP, Abujamra AL, Dani C, Quincozes-Santos A, Funchal C (2015) Carbon tetrachloride increases the pro-inflammatory cytokines levels in different brain areas of Wistar rats: the protective effect of acai frozen pulp. Neurochem Res 40(9):1976–1983

    PubMed  Google Scholar 

  97. Machado AK, Andreazza AC, da Silva TM et al (2016) Neuroprotective effects of açai (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxid Med Cell Longev 8940850

  98. Machado DE, Rodrigues-Baptista KC, Alessandra-Perini J et al (2016) Euterpe oleracea Extract (açai) is a promising novel pharmacological therapeutic treatment for experimental endometriosis. PLoS ONE 11(11):e0166059

    PubMed  PubMed Central  Google Scholar 

  99. Brasil A, Rocha FAF, Gomes BD et al (2017) Diet enriched with the Amazon fruit açai (Euterpe oleracea) prevents electrophysiological deficits and oxidative stress induced by methyl-mercury in the rat retina. Nutr Neurosci 20(5):265–272

    CAS  PubMed  Google Scholar 

  100. Nascimento VH, Lima CD, Paixão JT, Freitas JJ, Kietzer KS (2016) Antioxidant effects of açai seed (Euterpe oleracea) in anorexia-cachexia syndrome induced by Walker-256 tumor. Acta Cir Bras 31(9):597–601

    PubMed  Google Scholar 

  101. Carey AN, Miller MG, Fisher DR et al (2017) Dietary supplementation with the polyphenol-rich açai pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells. Nutr Neurosci 20(4):238–245

    CAS  PubMed  Google Scholar 

  102. Silva CCV, de Bem GF, da Costa CA et al (2017) Euterpe oleracea Mart. seed extract protects against renal injury in diabetic and spontaneously hypertensive rats: role of inflammation and oxidative stress. Eur J Nutr 20

  103. Monge-Fuentes V, Muehlmann LA, Longo JP et al (2017) Photodynamic therapy mediated by acai oil (Euterpe oleracea Mart.) in nanoemulsion: a potential treatment for melanoma. J Photochem Photobiol B 166:301–310

    CAS  PubMed  Google Scholar 

  104. Choi YJ, Kim N, Nam RH et al (2017) Açai berries inhibit colon tumorigenesis in azoxymethane/dextran sulfate sodium-treated mice. Gut Liver 11(2):243–252

    PubMed  Google Scholar 

  105. Shanely RA, Knab AM, Nieman DC, Jin F, McAnulty SR, Landram MJ (2010) Quercetin supplementation does not alter antioxidant status in humans. Free Radic Res 44(2):224–231

    CAS  PubMed  Google Scholar 

  106. Saldanha JF, Leal VO, Rizzetto F, Grimmer GH, Ribeiro-Alves M, Daleprane JB, Carraro-Eduardo JC, Mafra D (2016) Effects of resveratrol supplementation in Nrf2 and NF-κB expressions in nondialyzed chronic kidney disease patients: a randomized, double-blind, placebo-controlled, crossover clinical trial. J Ren Nutr 26(6):401–406

    CAS  PubMed  Google Scholar 

  107. Gale AM, Kaur R, Baker WL (2014) Hemodynamic and electrocardiographic effects of açai berry in healthy volunteers: a randomized controlled trial. Int J Cardiol 174(2):421–423

    PubMed  Google Scholar 

  108. Carvalho-Peixoto J, Moura MR, Cunha FA et al (2015) Consumption of açai (Euterpe oleracea Mart.) functional beverage reduces muscle stress and improves effort tolerance in elite athletes: a randomized controlled intervention study. Appl Physiol Nutr Metab 40(7):725–733

    CAS  PubMed  Google Scholar 

  109. Sousa Pereira I, Moreira CMPTC., Lima VRA et al (2015) The consumption of acai pulp changes the concentrations of plasminogen activator inhibitor-1 and epidermal growth factor (EGF) in apparently healthy women. Nutr Hosp 32(2):931–945

    PubMed  Google Scholar 

  110. Alqurashi RM, Galante LA, Rowland IR, Spencer JP, Commane DM (2016) Consumption of a flavonoid-rich açai meal is associated with acute improvements in vascular function and a reduction in total oxidative status in healthy overweight men. Am J Clin Nutr 104(5):1227–1235

    CAS  PubMed  Google Scholar 

  111. Barbosa PO, Pala D, Silva CT et al (2016) Açai (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women. Nutrition 32(6):674–680

    CAS  PubMed  Google Scholar 

  112. Pala D, Barbosa PO, Silva CT et al (2017) Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: a prospective study in women. Clin Nutr. https://doi.org/10.1016/j.clnu.2017.02.001

    Article  PubMed  Google Scholar 

  113. Small DM, Coombes JS, Bennett N, Johnson DW, Gobe G (2012) Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 17(4):311–321

    CAS  PubMed  Google Scholar 

  114. Modaresi A, Nafar M, Sahraei Z (2015) Oxidative stress in chronic kidney disease. Iran J Kidney Dis 9(3):165–179

    PubMed  Google Scholar 

  115. Chen Y, Gill PS, Welch WJ (2005) Oxygen availability limits renal NADPH-dependent superoxide production. Am J Physiol Renal Physiol 289:F749–F753

    CAS  PubMed  Google Scholar 

  116. Garvin JL, Ortiz PA (2003) The role of reactive oxygen species in the regulation of tubular function. Acta Physiol Scand 179(3):225–232

    CAS  PubMed  Google Scholar 

  117. Guijarro C, Egido J (2001) Transcription factor-κB (NF-κB) and renal disease. Kidney Int 59:415–424

    CAS  PubMed  Google Scholar 

  118. Tucker PS, Scanlan AT, Dalbo VJ (2015) Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid Med Cell Longev. https://doi.org/10.1155/2015/806358

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mircescu G (2008) Oxidative stress of chronic kidney disease. Acta Endocrinol 4(4): 433–446

    CAS  Google Scholar 

  120. Fouque D, Vennegoor M, Wee PT et al (2007) EBPG guideline on nutrition. Nephrol Dial Transplant 22(2):45–87

    Google Scholar 

  121. Nakhoul GN, Huang H, Arrigain S, Jolly SE, Schold JD, Nally JV Jr, Navaneethan SD (2015) Serum potassium, end-stage renal disease and mortality in chronic kidney disease. Am J Nephrol 41(6):456–463

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gilligan S, Raphael KL (2017) Hyperkalemia and hypokalemia in CKD: prevalence, risk factors, and clinical outcomes. Adv Chronic Kidney Dis 24(5):315–318

    PubMed  Google Scholar 

Download references

Acknowledgements

Conselho Nacional de Pesquisa (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) supported the research by Denise Mafra. Baxter Novum is the result of a grant from Baxter Healthcare to Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle C. V. S. Martins.

Ethics declarations

Conflict of interest

Bengt Lindholm is employed by Baxter Healthcare. The other authors do not declare any potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, I.C.V.S., Borges, N.A., Stenvinkel, P. et al. The value of the Brazilian açai fruit as a therapeutic nutritional strategy for chronic kidney disease patients. Int Urol Nephrol 50, 2207–2220 (2018). https://doi.org/10.1007/s11255-018-1912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-018-1912-z

Keywords

Navigation