Skip to main content
Log in

Prediction of hemodialysis vascular access failure using segmental bioimpedance analysis parameters

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Segmental bioimpedance analysis (BIA) can identify fluid volume changes in the arms of patients on hemodialysis (HD) after vascular access surgery. We investigated whether the difference in fluid volumes between the arms of the patients using segmental BIA is associated with vascular access outcome.

Methods

Body composition measurements were taken for 127 patients on HD with segmental, multi-frequency BIA equipment (InBody 1.0, Biospace Co. Ltd, Seoul, Korea). The difference in fluid volume between the arms of the patients was calculated from the fluid volume of the arm with the vascular access minus that of the other. The primary outcome was the loss of vascular access patency within 3 months of BIA measurement.

Results

The median absolute and relative inter-arm fluid volume differences were 150 ml [interquartile range (IQR) 90–250 ml] and 9.6% (IQR 4.9–14.4%), respectively. Within 3 months of BIA measurement, 38 patients (30.0%) experienced vascular access failure. When the patients were divided into three groups based on the tertiles of relative inter-arm fluid volume differences (lowest tertile: < 6.8%; middle tertile: 6.8–12.7%; highest tertile: > 12.7%), greater difference in relative inter-arm fluid volume differences was associated with higher vascular access failure rates (14 vs. 28 vs. 48%, p value for trend across tertiles = 0.003).

Conclusions

We conclude that segmental BIA may be used as a tool that can predict vascular access failure in patients on HD by calculating the relative difference in fluid volume between the arms of the patients with and without vascular access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kassam H, Sun Y, Adeniyi M, Agaba EI, Martinez M, Servilla KS, Raj DS, Murata GH, Tzamaloukas AH (2011) Hospitalizations before and after initiation of chronic hemodialysis. Hemodial Int 15(3):341–349

    Article  PubMed  Google Scholar 

  2. Lok CE, Foley R (2013) Vascular access morbidity and mortality: trends of the last decade. Clin J Am Soc Nephrol 8(7):1213–1219

    Article  PubMed  Google Scholar 

  3. Viecelli AK, Mori TA, Roy-Chaudhury P, Polkinghorne KR, Hawley CM, Johnson DW, Pascoe EM, Irish AB (2017) The pathogenesis of hemodialysis vascular access failure and systemic therapies for its prevention: optimism unfulfilled. Semin Dial Nov 26 [epub ahead of print]

  4. NKF, KDOQI (2006) 2006 Update vascular access. Guideline 4: detection of access dysfunction: monitoring, surveillance, and diagnostic testing. Am J Kidney Dis 48(1):S176–S247

    Google Scholar 

  5. Leivaditis K, Panagoutsos S, Roumeliotis A, Liakopoulos V, Vargemezis V (2014) Vascular access for hemodialysis: postoperative evaluation and function monitoring. Int Urol Nephrol 46(2):403–409

    Article  PubMed  Google Scholar 

  6. Polkinghorne KR, Lau KK, Saunder A, Atkins RC, Kerr PG (2006) Does monthly native arteriovenous fistula blood-flow surveillance detect significant stenosis—a randomized controlled trial. Nephrol Dial Transplant 21(9):2498–2506

    Article  PubMed  Google Scholar 

  7. Ram SJ, Nassar R, Work J, Abreo K, Dossabhoy NR, Paulson WD (2008) Risk of hemodialysis graft thrombosis: analysis of monthly flow surveillance. Am J Kidney Dis 52(5):930–938

    Article  PubMed  Google Scholar 

  8. Sergi G, Bussolotto M, Perini P, Calliari I, Giantin V, Ceccon A, Scanferla F, Bressan M, Moschini G, Enzi G (1994) Accuracy of bioelectrical impedance analysis in estimation of extracellular space in healthy subjects and in fluid retention states. Ann Nutr Metab 38(3):158–165

    Article  CAS  PubMed  Google Scholar 

  9. Frankenfield DC, Cooney RN, Smith JS, Rowe WA (1999) Bioelectrical impedance plethysmographic analysis of body composition in critically injured and healthy subjects. Am J Clin Nutr 69(3):426–431

    Article  CAS  PubMed  Google Scholar 

  10. Barbosa-Silva MC, Barros AJ, Wang J, Heymsfield SB, Pierson RN Jr (2005) Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr 82(1):49–52

    Article  CAS  PubMed  Google Scholar 

  11. Basile C, Vernaglione L, Di Iorio B, Bellizzi V, Chimienti D, Lomonte C, Rubino A, D’Ambrosio N (2007) Development and validation of bioimpedance analysis prediction equations for dry weight in hemodialysis patients. Clin J Am Soc Nephrol 2(4):675–680

    Article  PubMed  Google Scholar 

  12. Davies SJ, Davenport A (2014) The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int 86(3):489–496

    Article  PubMed  Google Scholar 

  13. Antlanger M, Hecking M, Haidinger M, Werzowa J, Kovarik JJ, Paul G, Eigner M, Bonderman D, Hörl WH, Säemann MD (2013) Fluid overload in hemodialysis patients: a cross-sectional study to determine its association with cardiac biomarkers and nutritional status. BMC Nephrol 2(14):266

    Article  Google Scholar 

  14. Rosenberger J, Kissova V, Majernikova M, Straussova Z, Boldizsar J (2014) Body composition monitor assessing malnutrition in the hemodialysis population independently predicts mortality. J Ren Nutr 24(3):172–176

    Article  PubMed  Google Scholar 

  15. Woodrow G, Oldroyd B, Smith MA, Turney JH (1997) The effect of arteriovenous fistulae in haemodialysis patients on whole body and segmental bioelectrical impedance. Nephrol Dial Transplant 12(3):524–527

    Article  CAS  PubMed  Google Scholar 

  16. Park J, Yang WS, Kim SB, Park SK, Lee SK, Park JS, Chang JW (2009) Usefulness of segmental bioimpedance ratio to determine dry body weight in new hemodialysis patients: a pilot study. Am J Nephrol 29(1):25–30

    Article  PubMed  Google Scholar 

  17. Ling CH, de Craen AJ, Slagboom PE, Gunn DA, Stokkel MP, Westendorp RG, Maier AB (2011) Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr 30(5):610–615

    Article  PubMed  Google Scholar 

  18. Zhu F, Schneditz D, Wang E, Martin K, Morris AT, Levin NW (1998) Validation of changes in extracellular volume measured during hemodialysis using a segmental bioimpedance technique. ASAIO J 44(5):M541–M545

    Article  CAS  PubMed  Google Scholar 

  19. Zhu F, Schneditz D, Levin NW (1999) Sum of segmental bioimpedance analysis during ultrafiltration and hemodialysis reduces sensitivity to changes in body position. Kidney Int 56(2):692–699

    Article  CAS  PubMed  Google Scholar 

  20. Codognotto M, Piazza M, Frigatti P, Piccoli A (2008) Influence of localized edema on whole-body and segmental bioelectrical impedance. Nutrition 24(6):569–574

    Article  PubMed  Google Scholar 

  21. Schoeller DA, Alon A, Manekas D, Mixson LA, Lasseter KC, Noonan GP, Bolognese JA, Heymsfield SB, Beals CR, Nunes I (2012) Segmental bioimpedance for measuring amlodipine-induced pedal edema: a placebo-controlled study. Clin Ther 34(3):580–592

    Article  CAS  PubMed  Google Scholar 

  22. Suehiro K, Morikage N, Yamashita O, Harada T, Ueda K, Samura M, Tanaka Y, Takeuchi Y, Nakamura K, Hamano K (2016) Distribution of extracellular fluid in legs with venous edema and lymphedema. Lymphat Res Biol 14(3):156–161

    Article  PubMed  Google Scholar 

  23. Nescolarde L, Yanguas J, Lukaski H, Alomar X, Rosell-Ferrer J, Rodas G (2013) Localized bioimpedance to assess muscle injury. Physiol Meas 34(2):237–245

    Article  CAS  PubMed  Google Scholar 

  24. Kenworthy P, Grisbrook TL, Phillips M, Gittings P, Wood FM, Gibson W, Edgar DW (2017) Bioimpedance spectroscopy: a technique to monitor interventions for swelling in minor burns. Burns 43(8):1725–1735

    Article  PubMed  Google Scholar 

  25. Booth J, Pinney J, Davenport A (2011) The effect of vascular access modality on changes in fluid content in the arms as determined by multifrequency bioimpedance. Nephrol Dial Transplant 26(1):227–231

    Article  PubMed  Google Scholar 

  26. Panorchan K, Nongnuch A, El-Kateb S, Goodlad C, Davenport A (2015) Does the presence of an arteriovenous fistula alter changes in body water following hemodialysis as determined by multifrequency bioelectrical impedance assessment? Hemodial Int 19(4):484–489

    Article  PubMed  Google Scholar 

  27. Lee SW, Song JH, Kim GA, Lee KJ, Kim MJ (2001) Assessment of total body water from anthropometry-based equations using bioelectrical impedance as reference in Korean adult control and haemodialysis subjects. Nephrol Dial Transplant 16(1):91–97

    Article  CAS  PubMed  Google Scholar 

  28. Krivitski NM (1995) Theory and validation of access flow measurement by dilution technique during hemodialysis. Kidney Int 48(1):244–250

    Article  CAS  PubMed  Google Scholar 

  29. Kraemer M, Rode C, Wizemann V (2006) Detection limit of methods to assess fluid status changes in dialysis patients. Kidney Int 69(9):1609–1620

    Article  CAS  PubMed  Google Scholar 

  30. Hur E, Usta M, Toz H, Asci G, Wabel P, Kahvecioglu S, Kayikcioglu M, Demirci MS, Ozkahya M, Duman S, Ok E (2013) Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: a randomized controlled trial. Am J Kidney Dis 61(6):957–965

    Article  PubMed  Google Scholar 

  31. Kalantar-Zadeh K, Ikizler TA, Block G, Avram MM, Kopple JD (2003) Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis 42(5):864–881

    Article  PubMed  Google Scholar 

  32. Marcelli D, Usvyat LA, Kotanko P, Bayh I, Canaud B, Etter M, Gatti E, Grassmann A, Wang Y, Marelli C, Scatizzi L, Stopper A, van der Sande FM, Kooman J, MONitoring Dialysis Outcomes (MONDO) Consortium (2015) Body composition and survival in dialysis patients: results from an international cohort study. Clin J Am Soc Nephrol 10(7):1192–1200

    Article  PubMed  PubMed Central  Google Scholar 

  33. Demirci C, Aşcı G, Demirci MS, Özkahya M, Töz H, Duman S, Sipahi S, Erten S, Tanrısev M, Ok E (2016) Impedance ratio: a novel marker and a powerful predictor of mortality in hemodialysis patients. Int Urol Nephrol 48(7):1155–1162

    Article  CAS  PubMed  Google Scholar 

  34. Garagarza C, João-Matias P, Sousa-Guerreiro C, Amaral T, Aires I, Ferreira C, Jorge C, Gil C, Ferreira A (2013) Nutritional status and overhydration: can bioimpedance spectroscopy be useful in haemodialysis patients? Nefrologia 33(5):667–674

    PubMed  Google Scholar 

  35. Kim HJ, Ko EJ, Lee Y, Jung H (2016) Association of vascular access flow and volume status on fistula arm by bio-impedance analysis in hemodialysis patients. Nephrol Dial Transplant 31(Suppl. 1):i273

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2017 education, research and student guidance grant funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunwoo Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Jeju National University Hospital Institutional Review Board in agreement with the Declaration of 1964 Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Seo, H.M., Kim, J.Y. et al. Prediction of hemodialysis vascular access failure using segmental bioimpedance analysis parameters. Int Urol Nephrol 50, 947–953 (2018). https://doi.org/10.1007/s11255-018-1827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-018-1827-8

Keywords

Navigation