Skip to main content
Log in

Principles of quantitative water and electrolyte replacement of losses from osmotic diuresis

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Osmotic diuresis results from urine loss of large amounts of solutes distributed either in total body water or in the extracellular compartment. Replacement solutions should reflect the volume and monovalent cation (sodium and potassium) content of the fluid lost. Whereas the volume of the solutions used to replace losses that occurred prior to the diagnosis of osmotic diuresis is guided by the clinical picture, the composition of these solutions is predicated on serum sodium concentration and urinary sodium and potassium concentrations at presentation. Water loss is relatively greater than the loss of sodium plus potassium leading to hypernatremia which is seen routinely when the solute responsible for osmotic diuresis (e.g., urea) is distributed in body water. Solutes distributed in the extracellular compartment (e.g., glucose or mannitol) cause, in addition to osmotic diuresis, fluid transfer from the intracellular into the extracellular compartment with concomitant dilution of serum sodium. Serum sodium concentration corrected to euglycemia should be substituted for actual serum sodium concentration when calculating the composition of the replacement solutions in hyperglycemic patients. While the patient is monitored during treatment, the calculation of the volume and composition of the replacement solutions for losses of water, sodium and potassium from ongoing osmotic diuresis should be based directly on measurements of urine volume and urine sodium and potassium concentrations and not by means of any predictive formulas. Monitoring of clinical status, serum sodium, potassium, glucose, other relevant laboratory values, urine volume, and urine sodium and potassium concentrations during treatment of severe osmotic diuresis is of critical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leaf A (1970) Regulation of intracellular fluid volume and disease. Am J Med 49:291–295. https://doi.org/10.1016/S0002-9343(70)80019-5

    Article  PubMed  CAS  Google Scholar 

  2. Maffly RH (1976) The body fluids: volume, composition, and clinical chemistry. In: Brenner BM, Rector FC Jr (eds) The kidney, vol 1, 2nd edn. WB Saunders, Philadelphia, pp 76–115

    Google Scholar 

  3. Rohrscheib M, Rondon-Berrios H, Argyropoulos C, Glew RH, Murata GH, Tzamaloukas AH (2015) Indices of serum tonicity in clinical practice. Am J Med Sci 349:537–544. https://doi.org/10.1097/MAJ.0000000000000470

    Article  PubMed  Google Scholar 

  4. Sam R, Feizi I (2012) Understanding hypernatremia. Am J Nephrol 36:97–104. https://doi.org/10.1159/000339625

    Article  PubMed  CAS  Google Scholar 

  5. Rondon-Berrios H, Argyropoulos C, Ing TS, Raj DS, Malhotra D, Agaba EI, Rohrscheib M, Khitan ZJ, Murata GH, Shapiro JI, Tzamaloukas AH (2017) Hypertonicity: clinical entities, manifestations and treatment. World J Nephrol 6:1–13. https://doi.org/10.5527/wjn.v6.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rondon-Berrios H, Agaba EI, Tzamaloukas AH (2014) Hyponatremia: pathophysiology, classification, manifestations and management. Int Urol Nephrol 46:2153–2165. https://doi.org/10.1007/s11255-014-0839-2

    Article  PubMed  CAS  Google Scholar 

  7. Edelman IS, Leibman J, O’Meara MP, Birkenfeld LW (1958) Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest 37:1236–1256. https://doi.org/10.1172/JCI103712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rose BD (1986) New approach to disturbances in the plasma sodium concentration. Am J Med 81:1033–1040. https://doi.org/10.1016/0002-9343(86)90401-8

    Article  PubMed  CAS  Google Scholar 

  9. Gennari FJ, Kassirer JP (1974) Osmotic diuresis. N Engl J Med 291:714–720. https://doi.org/10.1056/NEJM197410032911408

    Article  PubMed  CAS  Google Scholar 

  10. Oster JR, Singer I, Thatte L, Grant-Taylor I, Diego JM (1997) The polyuria of solute diuresis. Arch Intern Med 157:721–729. https://doi.org/10.1001/archinte.1997.00440280015002

    Article  PubMed  CAS  Google Scholar 

  11. Kamel KS, Ethier JH, Richardson RMA, Bear RA, Halperin ML (1990) Urine electrolytes and osmolality: when and how to use them. Am J Nephrol 10:89–102. https://doi.org/10.1159/0001168062

    Article  PubMed  CAS  Google Scholar 

  12. Rapoport S, Brodsky WA, West CD, Makler B (1948) Urinary flow, excretion of solutes, and osmotic work during diuresis of solute loading in hydropenic man. Science 108:630–632. https://doi.org/10.1126/science.108.2814.630

    Article  PubMed  CAS  Google Scholar 

  13. Thompson DD, Barrett MJ (1954) Urine flow and solute excretion during osmotic diuresis. Am J Physiol 176:33–38

    PubMed  CAS  Google Scholar 

  14. Raisz LG, Au WYW, Scheer RL (1959) Studies on the renal concentrating mechanism: IV. Osmotic diuresis. J Clin Invest 38:1725–1732. https://doi.org/10.1172/JCI103951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Brodsky WA, Rapoport S (1950) Osmotic diuresis in diabetes insipidus (Abstract). J Clin Invest 29:799

    Article  PubMed  CAS  Google Scholar 

  16. Corcoran AC, Del Greco F, Masson GM (1956) Osmotic (mannitol) diuresis in the anesthetized rat: effectiveness of water conserving mechanisms. Am J Physiol 187:515–519

    PubMed  CAS  Google Scholar 

  17. Azar S, Tobian L, Brown D (1971) A water-conserving biologic adaptation in renal papilla, which is stimulated by the massive osmotic diuresis of diabetes mellitus. J Lab Clin Med 78:1013–1014

    PubMed  CAS  Google Scholar 

  18. Argyropoulos C, Rondon-Berrios H, Raj DS, Malhotra D, Agaba EI, Rohrscheib M, Khitan Z, Murata GH, Shapiro JI, Tzamaloukas AH (2016) Hypertonicity: pathophysiologic concept and experimental studies. Cureus 8:e596. https://doi.org/10.7759/cureus.596

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raimann HG, Tzamaloukas AH, Levin NW, Ing TS (2017) Osmotic pressure in clinical medicine with an emphasis on dialysis. Semin Dial 30:69–79. https://doi.org/10.1111/sdi.12537

    Article  PubMed  Google Scholar 

  20. Tzamaloukas AH, Malhotra D, Rosen BH, Raj DSC, Murata GH, Shapiro JI (2013) Principles of management of severe hyponatremia. J Am Heart Assoc 2:e005199. https://doi.org/10.1161/JAHA.112.005199

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goldberg M (1981) Hyponatremia. Med Clin North Am 65:251–269. https://doi.org/10.1016/S0025-7125(16)1523-1

    Article  PubMed  CAS  Google Scholar 

  22. Shimizu K, Kurosawa T, Sanjo T, Hoshino M, Nonaka T (2002) Solute-free versus electrolyte-free water clearance in the analysis of osmoregulation. Nephron 91:51–57. https://doi.org/10.1159/000057604

    Article  PubMed  CAS  Google Scholar 

  23. Popli S, Tzamaloukas AH, Ing TS (2014) Osmotic diuresis-induced hypernatremia: better explained by solute-free water clearance or electrolyte-free water clearance? Int Urol Nephrol 46:207–210. https://doi.org/10.1007/s11255-012-0353-3

    Article  PubMed  Google Scholar 

  24. Wesson LG Jr, Anslow WP Jr (1948) Excretion of sodium and water during osmotic diuresis in the dog. Am J Physiol 153:465–474

    PubMed  CAS  Google Scholar 

  25. Wesson LG Jr, Anslow WP Jr (1952) Effect of osmotic and mercurial diuresis on simultaneous water diuresis. Am J Physiol 170:255–269

    PubMed  Google Scholar 

  26. Gonick HC, Coburn JW, Rubini ME, Maxwell MH, Kleeman CR (1964) Effect of urea osmotic diuresis on potassium excretion. Am J Physiol 206:1118–1122

    PubMed  CAS  Google Scholar 

  27. Gault MH, Dixon ME, Doyle M, Cohen WM (1968) Hypernatremia, azotemia, and dehydration due to high-protein tube feeding. Ann Intern Med 68:778–791. https://doi.org/10.7326/0003-4819-68-4-778

    Article  PubMed  CAS  Google Scholar 

  28. Leehey DJ, Daugirdas JT, Manahan FJ, Kellner KJ, Ing TS (1989) Prolonged hypernatremia associated with azotemia and hyponatriuria. Am J Med 86:494–496. https://doi.org/10.1016/0002-9343(89)90358-6

    Article  PubMed  CAS  Google Scholar 

  29. Welt LG, Seldin DW, Nelson WP III, German WJ, Peters JP (1952) Role of the central nervous system in metabolism of electrolytes and water. Arch Intern Med 90:355–378. https://doi.org/10.1001/archinte.1952.00240090076007

    Article  CAS  Google Scholar 

  30. Engel FL, Jaeger C (1954) Dehydration with hypernatremia, hyperchloremia and azotemia complicating nasogastric tube feeding. Am J Med 17:196–204. https://doi.org/10.1016/0002-9343(54)90257-0

    Article  PubMed  CAS  Google Scholar 

  31. Wilson WS, Meinert JK (1957) Extracellular hyperosmolarity secondary to high-protein nasogastric tube feeding. Ann Int Med 47:585–590. https://doi.org/10.7326/0003-4819-47-3-585

    Article  PubMed  CAS  Google Scholar 

  32. Gipstein RM, Boyle JD (1965) Hypernatremia complicating prolonged mannitol diuresis. N Engl J Med 272:1116–1117. https://doi.org/10.1056/NEJM196505272711109

    Article  PubMed  CAS  Google Scholar 

  33. Lindner G, Schwarz C, Funk G-C (2012) Osmotic diuresis due to urea as the cause of hypernatremia in critically ill patients. Nephrol Dial Transpl 27:962–967. https://doi.org/10.1093/ndt/gfr428

    Article  CAS  Google Scholar 

  34. Sam R, Hart P, Haghighat R, Ing TS (2012) Hypervolemic hypernatremia in patients recovering from acute kidney injury in the intensive care unit. Clin Exp Nephrol 16:136–146. https://doi.org/10.1007/s10157-011-0537-7

    Article  PubMed  Google Scholar 

  35. Anderson A, Barrett EJ (2013) Severe hypernatremia from a urea-induced diuresis due to body protein wasting in an insulin-dependent type 2 diabetic patient. J Clin Endocrinol Metab 98:1800–1802. https://doi.org/10.1210/jc.2012-3225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Prevost M, Sun Y, Servilla KS, Massie L, Glew RH, Tzamaloukas AH (2012) Repeated intoxication presenting with azotemia, elevated serum osmolal gap and metabolic acidosis with high anion gap. Differential diagnosis, management and prognosis. Int Urol Nephrol 44:309–314. https://doi.org/10.1007/s11255-010-9796-6

    Article  PubMed  Google Scholar 

  37. Mellits ED, Cheek DB (1970) The assessment of body water and fatness from infancy to adulthood. Mon Soc Res Child Dev 35:12–26. https://doi.org/10.2307/1165809

    Article  CAS  Google Scholar 

  38. Hume R, Weyers E (1971) Relationship between total body water and surface area in normal and obese subjects. J Clin Pathol 24:234–238. https://doi.org/10.1136/jcp.24.3.234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Watson PE, Watson ID, Butt PD (1980) Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr 33:27–39

    Article  PubMed  CAS  Google Scholar 

  40. Chumlea WC, Guo SS, Zeller CM, Reo NV, Baumgartner RN, Garry PJ, Wang J, Pierson RN Jr, Heymsfield SB, Siervogel RM (2001) Total body water reference values and prediction equations for adults. Kidney Int 59:2250–2258. https://doi.org/10.1046/j.1523-1755.2001.00741.x

    Article  PubMed  CAS  Google Scholar 

  41. Arieff AI, Carroll HJ (1972) Nonketotic hyperosmolar coma with hyperglycemia. Medicine (Baltimore) 51:73–94. https://doi.org/10.1097/00005792-197203000-00001

    Article  CAS  Google Scholar 

  42. Tzamaloukas AH, Sun Y, Konstantinov NK, Dorin RI, Ing TS, Malhotra D, Murata GH, Shapiro JI (2013) Principles of quantitative fluid and cation replacement in extreme hyperglycemia. Cureus 5:e110. https://doi.org/10.7759/cureus.110

    Article  Google Scholar 

  43. Katz MA (1973) Hyperglycemia-induced hyponatremia: calculation of the expected serum sodium depression. N Engl J Med 289:843–844. https://doi.org/10.1056/NEJM197310182891607

    Article  PubMed  CAS  Google Scholar 

  44. Al-Kudsi RR, Daugirdas JT, Ing TS, Kheirbek AO, Popli S, Hano JE, Gandhi VC (1982) Extreme hyperglycemia in dialysis patients. Clin Nephrol 17:228–231

    PubMed  CAS  Google Scholar 

  45. Aviram A, Pfau A, Czacskes JW, Ullmann TD (1967) Hyperosmolality with hyponatremia, caused by inappropriate administration of mannitol. Am J Med 42:648–650. https://doi.org/10.1016/0002-9343(67)90066-6

    Article  PubMed  CAS  Google Scholar 

  46. Kapsner CO, Tzamaloukas AH (1991) Understanding serum electrolytes: how to avoid mistakes. Postgrad Med 90:151–154, 157–158, 161. https://doi.org/10.1080/00325481.1991.11701146

  47. Visweswaran P, Massin EK, DuBose TD (1997) Mannitol-induced acute renal failure. J Am Soc Nephrol 8:1028–1033

    PubMed  CAS  Google Scholar 

  48. Roumelioti M-E, Glew RH, Khitan ZJ, Rondon-Berrios H, Argyropoulos CP, Malhotra D, Raj DS, Agaba EI, Rohrscheib M, Murata GH, Shapiro JI, Tzamaloukas AH (2018) Fluid balance concepts in medicine: principles and practice. World J Nephrol 7:1–28. https://doi.org/10.5527/wjn.v7.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nguyen MK, Kurtz I (2005) Derivation of a new formula for calculating urinary electrolyte-free water clearance based on the Edelman equation. Am J Physiol Renal Physiol 288:F1–F7. https://doi.org/10.1152/ajprenal.00259.2004

    Article  PubMed  CAS  Google Scholar 

  50. Sterns RH (2015) Disorders of plasma sodium—causes, consequences and correction. N Engl J Med 372:55–65. https://doi.org/10.1056/NEJMra1404489

    Article  PubMed  CAS  Google Scholar 

  51. Lindner G, Schwartz C (2012) Electrolyte-free water clearance versus modified electrolyte-free water clearance; do the results justify the effort? Nephron Physiol 120:1–5. https://doi.org/10.1159/000336550

    Article  Google Scholar 

  52. Lindner G, Schwarz C, Kneidinger N, Kramer L, Oberbauer R, Druml W (2008) Can we really predict the change in serum sodium levels? An analysis of currently proposed formulae in hypernatremic patients. Nephrol Dial Transpl 23:3501–3508. https://doi.org/10.1093/ndt/gfn576

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios H. Tzamaloukas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumelioti, ME., Ing, T.S., Rondon-Berrios, H. et al. Principles of quantitative water and electrolyte replacement of losses from osmotic diuresis. Int Urol Nephrol 50, 1263–1270 (2018). https://doi.org/10.1007/s11255-018-1822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-018-1822-0

Keywords

Navigation