Skip to main content

Advertisement

Log in

Serum apolipoprotein B is inversely associated with eccentric left ventricular hypertrophy in peritoneal dialysis patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objectives

The study aimed to examine the relationship of serum apolipoprotein B level with left ventricular (LV) structural and functional characteristics, in particular, LV remodeling parameters in peritoneal dialysis (PD) patients.

Methods

A total of 182 patients with end-stage renal disease (ESRD) receiving PD were identified. Conventional echocardiography was performed for each patient, and echocardiographic characteristics were analyzed according to apo B quartile groups. Multivariate linear regression models were used to determine the associations between serum apo B and LV remodeling indices.

Results

A high serum apo B level was significantly related to the reduction in left atrium dimension (r = − 0.20, P = 0.011), LV dimensions (end-diastolic: r = − 0.27, P = 0.001; end-systolic: r = − 0.24, P = 0.003), peak velocities of early filling divided by peak velocities of atrial filling (r = − 0.38, P < 0.001), and LV volumetric dimension (end-diastolic: r = − 0.27, P < 0.001; end-systolic: r = − 0.28, P < 0.001). After adjustment for clinical confounding factors, the effect of serum apo B on LV eccentric remodeling modestly weakened but remained statistically significant (P = 0.038), while other associations were not significant. In multivariate linear regression analysis, conventional lipid profiles were not significantly associated with LV eccentric remodeling, whereas serum apo B was an independent determinant of LV dilatation (β: − 42.10, 95% CI − 74.82 to − 9.38, P = 0.012).

Conclusions

Serum apo B was significantly and inversely associated with LV dilatation, independently of conventional lipids and other CV risk factors in our ESRD patients undergoing PD. It suggested that low serum apo B level could be a powerful risk marker for eccentric left ventricular geometry remodeling and could be potentially used to risk-stratify PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, Matsushita K, Wen CP (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382(9889):339–352. https://doi.org/10.1016/S0140-6736(13)60595-4S0140-6736(13)60595-4

    Article  PubMed  Google Scholar 

  2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351(13):1296–1305. https://doi.org/10.1056/NEJMoa041031351/13/1296

    Article  CAS  PubMed  Google Scholar 

  3. Krediet RT, Balafa O (2010) Cardiovascular risk in the peritoneal dialysis patient. Nat Rev Nephrol 6(8):451–460. https://doi.org/10.1038/nrneph.2010.68nrneph.2010.68

    Article  PubMed  Google Scholar 

  4. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, Friedman J, Diamond GA (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97(6):535–543

    Article  CAS  PubMed  Google Scholar 

  5. Kwon DH, Halley CM, Carrigan TP, Zysek V, Popovic ZB, Setser R, Schoenhagen P, Starling RC, Flamm SD, Desai MY (2009) Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function: a delayed hyperenhancement cardiac magnetic resonance study. JACC Cardiovasc Imaging 2(1):34–44. https://doi.org/10.1016/j.jcmg.2008.09.010S1936-878X(08)00407-5

    Article  PubMed  Google Scholar 

  6. Reynolds MR, Josephson ME (2003) MADIT II (second multicenter automated defibrillator implantation trial) debate: risk stratification, costs, and public policy. Circulation 108(15):1779–1783. https://doi.org/10.1161/01.CIR.0000086777.82110.F5108/15/1779

    Article  PubMed  Google Scholar 

  7. Senior R, Basu S, Khattar R, Lahiri A (1998) Independent prognostic value of the extent and severity of systolic wall thickening abnormality at infarct site after thrombolytic therapy. Am Heart J 135(6 Pt 1):1093–1098

    Article  CAS  PubMed  Google Scholar 

  8. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1):44–51

    Article  CAS  PubMed  Google Scholar 

  9. Grayburn PA, Appleton CP, Demaria AN, Greenberg B, Lowes B, Oh J, Plehn JF, Rahko P, Sutton MSJ, Eichhorn EJ (2005) Echocardiographic predictors of morbidity and mortality in patients with advanced heart failure: the Beta-blocker evaluation of survival trial (BEST). J Am Coll Cardiol 45(7):1064–1071

    Article  PubMed  Google Scholar 

  10. Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barré PE (1995) The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol Jasn 5(12):2024–2031

    CAS  PubMed  Google Scholar 

  11. Eckardt KU, Scherhag A, Macdougall IC, Tsakiris D, Clyne N, Locatelli F, Zaug MF, Burger HU, Drueke TB (2009) Left ventricular geometry predicts cardiovascular outcomes associated with anemia correction in CKD. J Am Soc Nephrol 20(12):2651–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mimura I, Nishi H, Mise N, Mori M, Sugimoto T (2010) Left ventricular geometry and cardiovascular mortality based on haemodialysis patient autopsy analyses. Nephrology (Carlton) 15(5):549–554. https://doi.org/10.1111/j.1440-1797.2010.01266.x

    Article  Google Scholar 

  13. Paoletti E, De Nicola L, Gabbai FB, Chiodini P, Ravera M, Pieracci L, Marre S, Cassottana P, Luca S, Vettoretti S, Borrelli S, Conte G, Minutolo R (2016) Associations of left ventricular hypertrophy and geometry with adverse outcomes in patients with CKD and hypertension. Clin J Am Soc Nephrol 11(2):271–279. https://doi.org/10.2215/CJN.06980615

    Article  CAS  PubMed  Google Scholar 

  14. Han SS, Cho GY, Park YS, Baek SH, Ahn SY, Kim S, Chin HJ, Chae DW, Na KY (2015) Predictive value of echocardiographic parameters for clinical events in patients starting hemodialysis. J Korean Med Sci 30(1):44–53. https://doi.org/10.3346/jkms.2015.30.1.44

    Article  PubMed  Google Scholar 

  15. Chmielewski M, Carrero JJ, Nordfors L, Lindholm B, Stenvinkel P (2008) Lipid disorders in chronic kidney disease: reverse epidemiology and therapeutic approach. J Nephrol 21(5):635–644

    CAS  PubMed  Google Scholar 

  16. Coresh J, Longenecker JC, Rd ME, Young HJ, Klag MJ (1999) Epidemiology of cardiovascular risk factors in chronic renal disease. J Am Soc Nephrol 9(12 Suppl):24–30

    Google Scholar 

  17. Iseki K, Yamazato M, Tozawa M, Takishita S (2002) Hypocholesterolemia is a significant predictor of death in a cohort of chronic hemodialysis patients. Kidney Int 61(5):1887–1893

    Article  PubMed  Google Scholar 

  18. Kovesdy CP, Anderson JE, Kalantarzadeh K (2007) Inverse association between lipid levels and mortality in men with chronic kidney disease who are not yet on dialysis: effects of case mix and the malnutrition-inflammation-cachexia syndrome. J Am Soc Nephrol 18(1):304–311

    Article  CAS  PubMed  Google Scholar 

  19. Kalantar-Zadeh K, Kovesdy CP, Derose SF, Horwich TB, Fonarow GC (2007) Racial and survival paradoxes in chronic kidney disease. Nat Clin Pract Nephrol 3(9):493–506

    Article  PubMed  Google Scholar 

  20. Kilpatrick RD, Mcallister CJ, Kovesdy CP, Derose SF, Kopple JD, Kalantarzadeh K (2007) Association between serum lipids and survival in hemodialysis patients and impact of race. J Am Soc Nephrol 18(1):293–303

    Article  CAS  PubMed  Google Scholar 

  21. Locatelli F, Bommer J, London GM, Martin-Malo A, Wanners C, Yaqoob M, Zoccali C (2001) Cardiovascular disease determinants in chronic renal failure: clinical approach and treatment. Nephrol Dial Transplant 16(3):459–468. https://doi.org/10.1093/Ndt/16.3.459

    Article  CAS  PubMed  Google Scholar 

  22. Stack AG, Saran R (2002) Clinical correlates and mortality impact of left ventricular hypertrophy among new ESRD patients in the United States. Am J Kidney Dis 40(6):1202–1210. https://doi.org/10.1053/ajkd.2002.36881

    Article  PubMed  Google Scholar 

  23. London GM (2003) Left ventricular hypertrophy: why does it happen? Nephrol Dial Transplant 18(suppl 8):viii2–viii6

    PubMed  Google Scholar 

  24. Silberberg JS, Barre PE, Prichard SS, Sniderman AD (1989) Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int 36(2):286–290

    Article  CAS  PubMed  Google Scholar 

  25. Vaziri ND (2014) Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin Exp Nephrol 18(2):265–268. https://doi.org/10.1007/s10157-013-0847-z

    Article  CAS  PubMed  Google Scholar 

  26. Ferrara AL, Vaccaro O, Cardoni O, Panarelli W, Laurenzi M, Zanchetti A (2003) Is there a relationship between left ventricular mass and plasma glucose and lipids independent of body mass index? Results of the Gubbio Study. Nutr Metab Cardiovasc Dis 13(3):126–132

    Article  CAS  PubMed  Google Scholar 

  27. Sundstrom J, Lind L, Vessby B, Andren B, Aro A, Lithell HO (2001) Dyslipidemia and an unfavorable fatty acid profile predict left ventricular hypertrophy 20 years later. Circulation 103(6):836–841

    Article  CAS  PubMed  Google Scholar 

  28. Bild DE, Detrano R, Peterson D, Guerci A, Liu K, Shahar E, Ouyang P, Jackson S, Saad MF (2005) Ethnic differences in coronary calcification—the multi-ethnic study of atherosclerosis (MESA). Circulation 111(10):1313–1320. https://doi.org/10.1161/01.Cir.0000157730.94423.4b

    Article  PubMed  Google Scholar 

  29. Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, Catellier D, Patsch W (2001) Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions—the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 104(10):1108–1113. https://doi.org/10.1161/hc3501.095214

    Article  CAS  PubMed  Google Scholar 

  30. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovas Imaging 16(3):1–39

    Article  Google Scholar 

  31. Attman PO, Alaupovic P (1991) Lipid and apolipoprotein profiles of uremic dyslipoproteinemia-relation to renal function and dialysis. Nephron 57(4):401–410

    Article  CAS  PubMed  Google Scholar 

  32. Elovson J, Chatterton JE, Bell GT, Schumaker VN, Reuben MA, Puppione DL Jr, Young NL (1988) Plasma very low density lipoproteins contain a single molecule of apolipoprotein B. J Lipid Res 29(11):1461–1473

    CAS  PubMed  Google Scholar 

  33. Sniderman AD (2005) Apolipoprotein B versus non-high-density lipoprotein cholesterol: and the winner is. Circulation 112(22):3366–3367

    Article  PubMed  Google Scholar 

  34. Jungner I, Walldius G, Holme I, Kolar W, Steiner E (1992) Apolipoprotein B and A-I in relation to serum cholesterol and triglycerides in 43,000 Swedish males and females. Int J Clin Lab Res 21(2):247–255

    Article  CAS  PubMed  Google Scholar 

  35. Wald NJ, Law M, Watt HC, Wu T, Bailey A, Johnson AM, Craig WY, Ledue TB, Haddow JE (1994) Apolipoproteins and ischaemic heart disease: implications for screening. Lancet 343(8889):75–79

    Article  CAS  PubMed  Google Scholar 

  36. Mcqueen MJ, Hawken S, Wang X, Ounpuu S, Sniderman A, Probstfield J, Steyn K, Sanderson JE, Hasani M, Volkova E (2008) Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet 372(9634):224–233

    Article  CAS  PubMed  Google Scholar 

  37. Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E (2001) High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 358(9298):2026–2033. https://doi.org/10.1016/s0140-6736(01)07098-2

    Article  CAS  PubMed  Google Scholar 

  38. Vaessen SF, Schaap FG, Kuivenhoven JA, Groen AK, Hutten BA, Boekholdt SM, Hattori H, Sandhu MS, Bingham SA, Luben R (2006) Apolipoprotein A-V, triglycerides and risk of coronary artery disease: the prospective Epic-Norfolk Population Study. J Lipid Res 47(9):2064–2070

    Article  CAS  PubMed  Google Scholar 

  39. Meisinger C, Loewel H, Mraz W, Koenig W (2005) Prognostic value of apolipoprotein B and A-I in the prediction of myocardial infarction in middle-aged men and women: results from the MONICA/KORA Augsburg cohort study. Eur Heart J 26(3):271–278

    Article  CAS  PubMed  Google Scholar 

  40. Brunzell JD, Davidson M, Furberg CD, Goldberg RB, Howard BV, Stein JH, Witztum JL (2008) Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diab Care 31(4):1512–1524

    Article  Google Scholar 

  41. Contois JH, Mcconnell JP, Sethi AA, Csako G, Devaraj S, Hoefner DM, Warnick GR (2009) Apolipoprotein B and cardiovascular disease risk: position statement from the AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Clin Chem 55(3):407–419

    Article  CAS  PubMed  Google Scholar 

  42. Harper CR, Jacobson TA (2010) Using apolipoprotein B to manage dyslipidemic patients: time for a change? Mayo Clin Proc 85(5):440–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuster GM, Kotlyar E, Rude MK, Siwik DA, Liao R, Colucci WS, Sam F (2005) Mineralocorticoid receptor inhibition ameliorates the transition to myocardial failure and decreases oxidative stress and inflammation in mice with chronic pressure overload. Circulation 111(4):420–427

    Article  CAS  PubMed  Google Scholar 

  44. Naito K, Anzai T, Yoshikawa T, Anzai A, Kaneko H, Kohno T, Takahashi T, Kawamura A, Ogawa S (2008) Impact of chronic kidney disease on postinfarction inflammation, oxidative stress, and left ventricular remodeling. J Cardiac Fail 14(10):831–838

    Article  CAS  Google Scholar 

  45. Liu Y, Coresh J, Eustace JA, Longenecker JC, Jaar B, Fink NE, Tracy RP, Powe NR, Klag MJ (2004) Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 291(4):10–11

    Article  Google Scholar 

  46. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, Wanner C, Krane V, Cass A, Craig J, Neal B, Jiang L, Hooi LS, Levin A, Agodoa L, Gaziano M, Kasiske B, Walker R, Massy ZA, Feldt-Rasmussen B, Krairittichai U, Ophascharoensuk V, Fellstrom B, Holdaas H, Tesar V, Wiecek A, Grobbee D, de Zeeuw D, Gronhagen-Riska C, Dasgupta T, Lewis D, Herrington W, Mafham M, Majoni W, Wallendszus K, Grimm R, Pedersen T, Tobert J, Armitage J, Baxter A, Bray C, Chen Y, Chen Z, Hill M, Knott C, Parish S, Simpson D, Sleight P, Young A, Collins R (2011) The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377(9784):2181–2192. https://doi.org/10.1016/s0140-6736(11)60739-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fleischmann EH, Bower JD, Salahudeen AK (2001) Risk factor paradox in hemodialysis: better nutrition as a partial explanation. ASAIO J 47(1):74–81

    Article  CAS  PubMed  Google Scholar 

  48. Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, Franch H, Guarnieri G, Ikizler TA, Kaysen G, Lindholm B et al (2008) A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 73(4):391–398

    Article  CAS  PubMed  Google Scholar 

  49. Habib AN, Baird BC, Leypoldt JK, Cheung AK, Goldfarbrumyantzev AS (2006) The association of lipid levels with mortality in patients on chronic peritoneal dialysis. Nephrol Dial Transpl 21(10):2881–2892

    Article  Google Scholar 

  50. Ritz E (1996) Why are lipids not predictive of cardiovascular death in the dialysis patient? Min Electrolyte Metab 22(22):9–12

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghong Liu or Fengjuan Yao.

Ethics declarations

Conflict of interest

This study did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector. No competing financial interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, M., Liu, Y., Wang, H. et al. Serum apolipoprotein B is inversely associated with eccentric left ventricular hypertrophy in peritoneal dialysis patients. Int Urol Nephrol 50, 155–165 (2018). https://doi.org/10.1007/s11255-017-1737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1737-1

Keywords

Navigation