International Urology and Nephrology

, Volume 49, Issue 11, pp 2071–2078 | Cite as

Effect of renal transplantation on cognitive function in hemodialysis patients: a longitudinal study

  • Yogesh K. Chhabra
  • Sanjay Sood
  • Omprakash Rathi
  • Sandeep Mahajan
Nephrology – Original Paper



The literature notes high prevalence of cognitive function (CF) impairment among hemodialysis patients. Renal transplantation by reversing metabolic factors should improve cognitive function; however, results in post-transplant patients are inconsistent. Lack of longitudinal studies, variable and small patient population, variable renal function and post-transplantation period and use of non-specific tests make results difficult to interpret. We looked at CF in stable hemodialysis patients just prior to live renal transplantation and approximately 3 months subsequently using well-validated electrophysiological study of P300 cognitive potential obtained by auditory oddball paradigm using multiple scalp electrodes.


Ten healthy age- and gender-matched controls (group 1) and 20 end-stage kidney disease (ESKD) male patients on maintenance hemodialysis with no other comorbidities that affect CF were studied before (group 2) and 3 months after successful transplantation (group 3).


ESKD population had mean age of 29.7 ± 7.5 years, with mean dialysis vintage and post-transplant period being 10.3 ± 6.9 and 3.2 ± 0.4 months, respectively. Mean P300 latencies in groups 1, 2 and 3 were 319 ± 33.6, 348.6 ± 27.8 and 316.4 ± 33.4 ms, respectively (P < 0.001 group 1 vs 2 and group 2 vs 3; group 1 vs 3 NS). Mean P300 amplitude in groups 1, 2 and 3 was 27.9 ± 12.8, 13.4 ± 8.6 and 14.6 ± 9.4 µV, respectively (P < 0.001 group 1 vs 2 and group 1 vs 3; group 2 vs 3 NS). P300 latencies correlated negatively with hemoglobin and serum albumin.


ESKD patients have impaired CF as documented by prolonged P300 latencies. There was normalization of P300 latencies post-transplantation indicating role of uremic toxins in CF impairment.


Albumin Chronic kidney disease Evoked-related potential P300 Cognitive function 


Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Informed consent

The institutional ethics committee approved the study, and written informed consent was obtained from all the study subjects.


  1. 1.
    Home| APA DSM-5 [Internet].
  2. 2.
    Tamura MK, Larive B, Unruh ML, Stokes JB, Nissenson A, Mehta RL et al (2010) Prevalence and correlates of cognitive impairment in hemodialysis patients: the frequent hemodialysis network trials. Clin J Am Soc Nephrol 5(8):1429–1438CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Murray AM, Tupper DE, Knopman DS, Gilbertson DT, Pederson SL, Li S et al (2006) Cognitive impairment in hemodialysis patients is common. Neurology 67(2):216–223CrossRefPubMedGoogle Scholar
  4. 4.
    Griva K, Stygall J, Hankins M, Davenport A, Harrison M, Newman SP (2010) Cognitive impairment and 7-year mortality in dialysis patients. Am J Kidney Dis 56(4):693–703CrossRefPubMedGoogle Scholar
  5. 5.
    Pereira AA, Weiner DE, Scott T, Sarnak MJ (2005) Cognitive function in dialysis patients. Am J Kidney Dis 45(3):448–462CrossRefPubMedGoogle Scholar
  6. 6.
    Bugnicourt J-M, Godefroy O, Chillon J-M, Choukroun G, Massy ZA (2013) Cognitive disorders and dementia in CKD: the neglected kidney–brain axis. J Am Soc Nephrol 24(3):353–363CrossRefPubMedGoogle Scholar
  7. 7.
    Van Sandwijk MS, Ten Berge IJM, Majoie CBLM, Caan MWA, De Sonneville LMJ, Van Gool WA et al (2015) Cognitive changes in chronic kidney disease and after transplantation. Transplantation. doi: 10.1097/TP.0000000000000968 Google Scholar
  8. 8.
    Evans JD, Wagner CD, Welch JL (2004) Cognitive status in hemodialysis as a function of fluid adherence. Ren Fail 26(5):575–581CrossRefPubMedGoogle Scholar
  9. 9.
    Vos PF, Zilch O, Jennekens-Schinkel A, Salden M, Nuyen J, Kooistra MMP et al (2006) Effect of short daily home hemodialysis on quality of life, cognitive functioning and the electroencephalogram. Nephrol Dial Transplant 21(9):2529–2535CrossRefPubMedGoogle Scholar
  10. 10.
    Schneider SM, Malecki AK, Müller K, Schönfeld R, Girndt M, Mohr P et al (2015) Effect of a single dialysis session on cognitive function in CKD5D patients: a prospective clinical study. Nephrol Dial Transplant 30(9):1551–1559CrossRefPubMedGoogle Scholar
  11. 11.
    Mendley SR, Zelko FA (1999) Improvement in specific aspects of neurocognitive performance in children after renal transplantation. Kidney Int 56(1):318–323CrossRefPubMedGoogle Scholar
  12. 12.
    Icard P, Hooper SR, Gipson DS, Ferris ME (2010) Cognitive improvement in children with CKD after transplant. Pediatr Transplant 14(7):887–890CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hartmann H, Hawellek N, Wedekin M, Vogel C, Das AM, Balonwu K et al (2015) Early kidney transplantation improves neurocognitive outcome in patients with severe congenital chronic kidney disease. Transpl Int 28(4):429–436CrossRefPubMedGoogle Scholar
  14. 14.
    Kramer L, Madl C, Stockenhuber F, Yeganehfar W, Eisenhuber E, Derfler K et al (1996) Beneficial effect of renal transplantation on cognitive brain function. Kidney Int 49(3):833–838CrossRefPubMedGoogle Scholar
  15. 15.
    Griva K, Hansraj S, Thompson D, Jayasena D, Davenport A, Harrison M et al (2004) Neuropsychological performance after kidney transplantation: a comparison between transplant types and in relation to dialysis and normative data. Nephrol Dial Transplant 19(7):1866–1874CrossRefPubMedGoogle Scholar
  16. 16.
    Griva K, Thompson D, Jayasena D, Davenport A, Harrison M, Newman SP (2006) Cognitive functioning pre- to post-kidney transplantation—a prospective study. Nephrol Dial Transplant 21(11):3275–3282CrossRefPubMedGoogle Scholar
  17. 17.
    Gelb S, Shapiro RJ, Hill A, Thornton WL (2008) Cognitive outcome following kidney transplantation. Nephrol Dial Transplant 23(3):1032–1038CrossRefPubMedGoogle Scholar
  18. 18.
    Harciarek M, Biedunkiewicz B, Lichodziejewska-Niemierko M, Debska-Slizień A, Rutkowski B (2009) Cognitive performance before and after kidney transplantation: a prospective controlled study of adequately dialyzed patients with end-stage renal disease. J Int Neuropsychol Soc 15(5):684–694CrossRefPubMedGoogle Scholar
  19. 19.
    Radić J, Ljutić D, Radić M, Kovačić V, Dodig-Ćurković K, Šain M (2011) Kidney transplantation improves cognitive and psychomotor functions in adult hemodialysis patients. Am J Nephrol 34(5):399–406CrossRefPubMedGoogle Scholar
  20. 20.
    Pritchard WS (1981) Psychophysiology of P300. Psychol Bull 89(3):506–540CrossRefPubMedGoogle Scholar
  21. 21.
    Ruzicka E, Tesar V, Jelinkova E, Mmerta M, Nevsimalova S, Kucerova O (1993) Event-related potentials in evaluation of metabolic encephalopathies. Schweiz Arch Für Neurol Psychiatr Zurich Switz 1985 144(4):378–384Google Scholar
  22. 22.
    Grimm G, Stockenhuber F, Schneeweiss B, Madl C, Zeitlhofer J, Schneider B (1990) Improvement of brain function in hemodialysis patients treated with erythropoietin. Kidney Int 38(3):480–486CrossRefPubMedGoogle Scholar
  23. 23.
    Murray AM, Pederson SL, Tupper DE, Hochhalter AK, Miller WA, Li Q et al (2007) Acute variation in cognitive function in hemodialysis patients: a cohort study with repeated measures. Am J Kidney Dis 50(2):270–278CrossRefPubMedGoogle Scholar
  24. 24.
    Madan P, Kalra OP, Agarwal S, Tandon OP (2007) Cognitive impairment in chronic kidney disease. Nephrol Dial Transplant 22(2):440–444CrossRefPubMedGoogle Scholar
  25. 25.
    Tilki HE, Akpolat T, Tunali G, Kara A, Onar MK (2004) Effects of hemodialysis and continuous ambulatory peritoneal dialysis on P300 cognitive potentials in uraemic patients. Ups J Med Sci 109(1):43–48CrossRefPubMedGoogle Scholar
  26. 26.
    Kuba M, Peregrin J, Vít F, Hanusová I, Erben J (1983) Pattern-reversal visual evoked potentials in patients with chronic renal insufficiency. Electroencephalogr Clin Neurophysiol 56(5):438–442CrossRefPubMedGoogle Scholar
  27. 27.
    Yu YL, Cheng IK, Chang CM, Bruce IC, Mok KY, Zhong WY et al (1991) A multimodal neurophysiological assessment in terminal renal failure. Acta Neurol Scand 83(2):89–95CrossRefPubMedGoogle Scholar
  28. 28.
    Sehgal AR, Grey SF, DeOreo PB, Whitehouse PJ (1997) Prevalence, recognition, and implications of mental impairment among hemodialysis patients. Am J Kidney Dis 30(1):41–49CrossRefPubMedGoogle Scholar
  29. 29.
    Genazzani AR, Pluchino N, Luisi S, Luisi M (2007) Estrogen, cognition and female ageing. Hum Reprod Update 13(2):175–187CrossRefPubMedGoogle Scholar
  30. 30.
    Evers S, Tepel M, Obladen M, Suhr B, Husstedt IW, Grotemeyer KH et al (1998) Influence of end-stage renal failure and hemodialysis on event-related potentials. J Clin Neurophysiol 15(1):58–63CrossRefPubMedGoogle Scholar
  31. 31.
    Ng T-P, Niti M, Feng L, Kua E-H, Yap K-B (2009) Albumin, apolipoprotein E-epsilon4 and cognitive decline in community-dwelling Chinese older adults. J Am Geriatr Soc 57(1):101–106CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Yogesh K. Chhabra
    • 1
  • Sanjay Sood
    • 2
  • Omprakash Rathi
    • 3
  • Sandeep Mahajan
    • 1
  1. 1.Department of NephrologyAll India Institute of Medical SciencesNew DelhiIndia
  2. 2.Department of PhysiologyRAK College of Medical SciencesRas Al KhaimahUAE
  3. 3.Department of NephrologyBombay HospitalIndoreIndia

Personalised recommendations