Skip to main content

Advertisement

Log in

Preconditioning of primary human renal proximal tubular epithelial cells without tryptophan increases survival under hypoxia by inducing autophagy

  • Nephrology – Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Hypoxia plays a significant role in the pathogenesis of acute kidney injury (AKI). Autophagy protects from AKI. Amino acid deprivation induces autophagy. The effect of l-tryptophan depletion on survival and autophagy in cultures of renal proximal tubular epithelial cells (RPTECs) under hypoxia was evaluated.

Methods

RPTECs were preconditioned in a medium containing or not tryptophan, following culture under hypoxia and treatment with or without the autophagy inhibitor chloroquine. Cell survival was assessed by cell imaging, the level of certain proteins by western blotting and cellular ATP fluorometrically.

Results

Preconditioning of RPTECs in a medium without tryptophan activated general control nonderepressible 2 kinase and induced changes that favored autophagy and cell survival under hypoxic conditions. Additionally, it increased cellular ATP, while it inhibited apoptosis. Inhibition of autophagy nullified the induced increase in cellular ATP and cell survival by the absence of tryptophan. The absence of tryptophan increased p53, although its effect on p53’s transcriptional targets was heterogeneous. In accordance with the decreased apoptosis, expression of p21 increased, while expression of Bax decreased. The expression of BNIP3L, which may be pro-apoptotic or pro-autophagic, increased. Considering the decreased apoptosis, it is likely that tryptophan depletion enhances autophagy through a p53-mediated increase of BNIP3L.

Conclusion

Preconditioning of primary human RPTECs in a medium without tryptophan increases their survival under hypoxia by inducing autophagy. Identifying new molecular mechanisms that protect renal tissue from hypoxia could be proved clinically important in the prevention of AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hsu CY, McCulloch CE, Fan D, Ordonez JD, Chertow GM, Go AS (2007) Community-based incidence of acute renal failure. Kidney Int 72(2):208–212. doi:10.1038/sj.ki.5002297

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR (2009) Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 53(6):961–973. doi:10.1053/j.ajkd.2008.11.034

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334(22):1448–1460. doi:10.1056/NEJM199605303342207

    Article  CAS  PubMed  Google Scholar 

  4. Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, Held PJ, Port FK (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 341(23):1725–1730. doi:10.1056/NEJM199912023412303

    Article  CAS  PubMed  Google Scholar 

  5. Shoskes DA, Halloran PF (1996) Delayed graft function in renal transplantation: etiology, management and long-term significance. J Urol 155(6):1831–1840

    Article  CAS  PubMed  Google Scholar 

  6. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121(11):4210–4221. doi:10.1172/JCI45161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581. doi:10.1128/MCB.00166-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293. doi:10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94. doi:10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaushal GP, Shah SV (2016) Autophagy in acute kidney injury. Kidney Int 89(4):779–791. doi:10.1016/j.kint.2015.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang M, Liu K, Luo J, Dong Z (2010) Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176(3):1181–1192. doi:10.2353/ajpath.2010.090594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, Rakugi H, Isaka Y (2011) Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 22(5):902–913. doi:10.1681/ASN.2010070705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z (2012) Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82(12):1271–1283. doi:10.1038/ki.2012.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, Walz G, Huber TB (2012) Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8(5):826–837. doi:10.4161/auto.19419

    Article  CAS  PubMed  Google Scholar 

  15. Guan X, Qian Y, Shen Y, Zhang L, Du Y, Dai H, Qian J, Yan Y (2015) Autophagy protects renal tubular cells against ischemia/reperfusion injury in a time-dependent manner. Cell Physiol Biochem 36(1):285–298. doi:10.1159/000374071

    Article  CAS  PubMed  Google Scholar 

  16. Mei S, Livingston M, Hao J, Li L, Mei C, Dong Z (2016) Autophagy is activated to protect against endotoxic acute kidney injury. Sci Rep 6:22171. doi:10.1038/srep22171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaudhary K, Shinde R, Liu H, Gnana-Prakasam JP, Veeranan-Karmegam R, Huang L, Ravishankar B, Bradley J, Kvirkvelia N, McMenamin M, Xiao W, Kleven D, Mellor AL, Madaio MP, McGaha TL (2015) Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy. J Immunol 194(12):5713–5724. doi:10.4049/jimmunol.1500277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326. doi:10.1016/j.cell.2010.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Russell RC, Yuan HX, Guan KL (2014) Autophagy regulation by nutrient signaling. Cell Res 24(1):42–57. doi:10.1038/cr.2013.166

    Article  CAS  PubMed  Google Scholar 

  20. Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449(1):1–10. doi:10.1042/BJ20121098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. B’Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A (2013) The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 41(16):7683–7699. doi:10.1093/nar/gkt563

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fougeray S, Mami I, Bertho G, Beaune P, Thervet E, Pallet N (2012) Tryptophan depletion and the kinase GCN2 mediate IFN-gamma-induced autophagy. J Immunol 189(6):2954–2964. doi:10.4049/jimmunol.1201214

    Article  CAS  PubMed  Google Scholar 

  23. Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Munzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD (2014) FGF21 is an endocrine signal of protein restriction. J Clin Invest 124(9):3913–3922. doi:10.1172/JCI74915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng W, Robertson L, Gallinetti J, Mejia P, Vose S, Charlip A, Chu T, Mitchell JR (2012) Surgical stress resistance induced by single amino acid deprivation requires Gcn2 in mice. Sci Transl Med 4(118):118ra111. doi:10.1126/scitranslmed.3002629

    Article  Google Scholar 

  25. Lieberthal W, Nigam SK (1998) Acute renal failure. I. Relative importance of proximal vs. distal tubular injury. Am J Physiol 275(5):F623–F631

    CAS  PubMed  Google Scholar 

  26. Eleftheriadis T, Pissas G, Sounidaki M, Tsogka K, Antoniadis N, Antoniadi G, Liakopoulos V, Stefanidis I (2016) Indoleamine 2,3-dioxygenase, by degrading l-tryptophan, enhances carnitine palmitoyltransferase I activity and fatty acid oxidation, and exerts fatty acid-dependent effects in human alloreactive CD4+ T-cells. Int J Mol Med. doi:10.3892/ijmm.2016.2750

    Google Scholar 

  27. Staiger K, Staiger H, Weigert C, Haas C, Haring HU, Kellerer M (2006) Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-kappaB activation. Diabetes 55(11):3121–3126. doi:10.2337/db06-0188

    Article  CAS  PubMed  Google Scholar 

  28. Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258(6):479–517. doi:10.1111/j.1365-2796.2005.01570.x

    Article  CAS  PubMed  Google Scholar 

  29. Hubbard VM, Valdor R, Patel B, Singh R, Cuervo AM, Macian F (2010) Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185(12):7349–7357. doi:10.4049/jimmunol.1000576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598. doi:10.1038/ncb2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hollinshead KE, Tennant DA (2016) Mitochondrial metabolic remodeling in response to genetic and environmental perturbations. Wiley Interdiscip Rev Syst Biol Med 8(4):272–285. doi:10.1002/wsbm.1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa AS, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435. doi:10.1038/nature13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eleftheriadis T, Pissas G, Antoniadi G, Spanoulis A, Liakopoulos V, Stefanidis I (2014) Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation. Int Immunol 26(12):673–684. doi:10.1093/intimm/dxu077

    Article  CAS  PubMed  Google Scholar 

  34. Kwon NH, Kang T, Lee JY, Kim HH, Kim HR, Hong J, Oh YS, Han JM, Ku MJ, Lee SY, Kim S (2011) Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc Natl Acad Sci USA 108(49):19635–19640. doi:10.1073/pnas.1103922108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brady CA, Attardi LD (2010) p53 at a glance. J Cell Sci 123(Pt 15):2527–2532. doi:10.1242/jcs.064501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Laszlo C, Liu Y, Liu W, Chen X, Evans SC, Wu S (2010) Regulation of G(1) arrest and apoptosis in hypoxia by PERK and GCN2-mediated eIF2alpha phosphorylation. Neoplasia 12(1):61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xenaki G, Ontikatze T, Rajendran R, Stratford IJ, Dive C, Krstic-Demonacos M, Demonacos C (2008) PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 27(44):5785–5796. doi:10.1038/onc.2008.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fei P, Wang W, Kim SH, Wang S, Burns TF, Sax JK, Buzzai M, Dicker DT, McKenna WG, Bernhard EJ, El-Deiry WS (2004) Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 6(6):597–609. doi:10.1016/j.ccr.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  39. Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74(5):631–640. doi:10.1038/ki.2008.214

    Article  CAS  PubMed  Google Scholar 

  40. Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C (1996) Mood response to acute tryptophan depletion in healthy volunteers: sex differences and temporal stability. Neuropsychopharmacology 15(5):465–474. doi:10.1016/S0893-133X(96)00056-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded only by the resources of our department

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Eleftheriadis.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable, since this article does not contain any studies with human participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleftheriadis, T., Pissas, G., Sounidaki, M. et al. Preconditioning of primary human renal proximal tubular epithelial cells without tryptophan increases survival under hypoxia by inducing autophagy. Int Urol Nephrol 49, 1297–1307 (2017). https://doi.org/10.1007/s11255-017-1596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1596-9

Keywords

Navigation