Skip to main content

Advertisement

Log in

Less known pathophysiological mechanisms of anemia in patients with diabetic nephropathy

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is currently considered a modern global epidemic, and diabetic nephropathy (DN) is the most common cause of chronic kidney disease (CKD). Anemia is one of the most significant complications of CKD, and it is mainly attributed to insufficient erythropoietin (EPO) production. However, anemia develops earlier in the course of CKD among patients with DM, and the severity of anemia tends to be more marked in these patients compared to nondiabetic subjects, regardless of the stage of CKD. In this review, we focus on the “less known” complex interacting mechanisms which are involved in the pathophysiology of anemia associated with DN. Although the major cause of anemia in DN is considered to be an inappropriate response of the plasma EPO concentration to anemia, several other possible mechanisms have been suggested. Glomerular hyperfiltration, proteinuria, renal tubular dysfunction and interstitial fibrosis are among the main culprits. On the other hand, systemic effects such as chronic inflammation, autonomic neuropathy and the renin–angiotensin system are also involved. Finally, several medications are considered to aggravate anemia associated with DN. Since anemia is an important predictor of quality of life and is implicated in the increased burden of cardiovascular morbidity and mortality, further research is required to elucidate its pathogenesis in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Harcourt BE, Penfold SA, Forbes JM (2013) Coming full circle in diabetes mellitus: from complications to initiation. Nat Rev Endocrinol 9:113–123

    CAS  PubMed  Google Scholar 

  2. Shaw JE, Sicree RA, Zimmer PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    CAS  PubMed  Google Scholar 

  3. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188

    CAS  PubMed  Google Scholar 

  4. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH et al (2004) Nephropathy in diabetes. Diabetes Care 27:S79–S83

    PubMed  Google Scholar 

  5. Mou S, Wang Q, Liu J, Che X, Zhang M, Cao L et al (2010) Prevalence of nondiabetic renal disease in patients with type 2 diabetes. Diabetes Res Clin Pract 87:354–359

    CAS  PubMed  Google Scholar 

  6. Parving HH, Smidt UM, Friisberg B, Bonnevie-Nielsen V, Andersen AR (1981) A prospective study of glomerular filtration rate and arterial blood pressure in insulin dependent diabetics with diabetic nephropathy. Diabetologia 20:457–461

    CAS  PubMed  Google Scholar 

  7. Gall M-A, Rossing P, Skøtt P, Damsbo P, Vaag A, Bech K et al (1991) Prevalence of micro- and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non–insulin-dependent) diabetic patients. Diabetologia 34:655–661

    CAS  PubMed  Google Scholar 

  8. Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG, DEMAND investigators (2006) Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int 69(11):2057–2063

    PubMed  Google Scholar 

  9. Rossing P, Hougaard P, Parving HH (2005) Progression of microalbuminuria in 15 type 1 diabetes: ten-year prospective observational study. Kidney Int 68(4):1446–1450

    PubMed  Google Scholar 

  10. Foley RN, Collins AJ (2007) End-stage renal disease in the United States: an update from the United States Renal Data System. J Am Soc Nephrol 18:2644–2648

    PubMed  Google Scholar 

  11. Stengel B, Billon S, Van Dijk PC, Jager KJ, Dekker FW, Simpson K et al (2003) Trends in the incidence of renal replacement therapy for end-stage renal disease in Europe, 1990–1999. Nephrol Dial Transplant 18:1824–1833

    PubMed  Google Scholar 

  12. Villar E, Chang SH, McDonald SP (2007) Incidences, treatments, outcomes, and sex effect on survival in patients with end-stage renal disease by diabetes status in Australia and New Zealand (1991–2005). Diabetes Care 30:3070–3076

    PubMed  Google Scholar 

  13. Dikow R, Schwenger V, Schömig M, Ritz E (2002) How should we manage anaemia in patients with diabetes? Nephrol Dial Transplant 17(Suppl 1):62–72

    Google Scholar 

  14. (2007) KDOQI Clinical Practice Guideline and Clinical Practice Recommendations for anemia in chronic kidney disease: 2007 update of hemoglobin target. Am J Kidney Dis 50(3):471 530

  15. Goldhaber A, Ness-Abramof R, Ellis MH (2009) Prevalence of anemia among unselected adults with diabetes mellitus and normal serum creatinine levels. Endocr Pract 15(7):714–719

    PubMed  Google Scholar 

  16. Grossman C, Dovrish Z, Koren-Morag N, Bornstein G, Leibowitz A (2014) Diabetes mellitus with normal renal function is associated with anaemia. Diabetes Metab Res Rev 30(4):291–296

    CAS  PubMed  Google Scholar 

  17. Bulum T, Prkacin I, Blaslov K, Zibar K, Duvnjak L (2013) Association between red blood cell count and renal function exist in type 1 diabetic patients in the absence of nephropathy. Coll Antropol 37(3):777–782

    CAS  PubMed  Google Scholar 

  18. Ritz E, Haxsen V (2005) Diabetic nephropathy and anaemia. Eur J Clin Invest 35(Suppl 3):66–74

    CAS  PubMed  Google Scholar 

  19. Astor BC, Muntner P, Levin A, Eustace JA, Coresh J (2002) Association of kidney function with anemia: the third National Health and Nutritional Examination Survey (1988–1994). Arch Intern Med 162:1401–1408

    PubMed  Google Scholar 

  20. El-Achkar TM, Ohmit SE, McCullough PA, Crook ED, Brown WW, Grimm R et al (2005) Higher prevalence of anemia with diabetes mellitus in moderate kidney insufficiency: the Kidney Early Evaluation Program. Kidney Int 67:1483–1488

    PubMed  Google Scholar 

  21. Bosman DR, Winkler AS, Marsden JT, McDougall IC, Watkins PJ (2001) Anemia with erythropoietin deficiency occurs early in diabetic nephropathy. Diabetes Care 24:495–499

    CAS  PubMed  Google Scholar 

  22. Thomas MC, Maclsaac RJ, Tsalamandris C, Molyneaux L, Goubina I, Fulcher G et al (2004) The burden of anemia in the type 2 diabetes and the role of nephropathy: a cross-sectional audit. Nephrol Dial Transplant 19:1792–1797

    PubMed  Google Scholar 

  23. Thomas MC, MacIsaac RJ, Tsalamandris C, Molyneaux L, Goubina I, Fulcher G et al (2004) Anemia in type 2 diabetes. J Clin Endocrinol Metab 89:4359–4363

    CAS  PubMed  Google Scholar 

  24. Thomas MC, MacIsaac RJ, Tsalamandris C, Power D, Jerums G (2003) Unrecognized anemia in patients with diabetes: a cross-sectional survey. Diabetes Care 26:1164–1169

    PubMed  Google Scholar 

  25. Schuster SJ, Koury ST, Bohrer M, Salceda S, Caro J (1992) Cellular sites of extrarenal and renal erythropoietin production in anaemic rats. Br J Haematol 81:153–159

    CAS  PubMed  Google Scholar 

  26. Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC et al (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44:1149–1162

    CAS  PubMed  Google Scholar 

  27. Jelkmann W (2011) Regulation of erythropoietin production. J Physiol 589:1251–1258

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Middleton SA, Barbone FP, Johnson DL, Thurmond RL, You Y, McMahon FJ et al (1999) Shared and unique determinants of the erythropoietin (EPO) receptor are important for binding EPO and EPO mimetic peptide. J Biol Chem 274:14163–14169

    CAS  PubMed  Google Scholar 

  29. Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112(3):470–478

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Thomas M, Tsalamandris C, Maclsaac R, Jerums G (2005) Anaemia in diabetes: an emerging complication of microvascular disease. Curr Diabetes Rev 1:107–126

    CAS  PubMed  Google Scholar 

  31. Haase VH (2010) Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol 299(1):F1–F13

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basichelix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Winkler AS, Marsden J, Chaudhuri KR, Hambley H, Watkins PJ (1999) Erythropoietin depletion and anaemia in diabetes mellitus. Diabet Med 16:813–819

    CAS  PubMed  Google Scholar 

  34. Ishimura E, Nishizawa Y, Okuno S, Matsumoto N, Emoto M, Inaba M et al (1998) Diabetes mellitus increases the severity of anemia in non-dialyzed patients with renal failure. J Nephrol 11:83–86

    CAS  PubMed  Google Scholar 

  35. Inomata H, Itoh M, Imai H, Sato T (1997) Serum levels of erythropoietin as a novel marker reflecting the severity of diabetic nephropathy. Nephron 75:426–430

    CAS  PubMed  Google Scholar 

  36. Jerums G, Premaratne E, Panagiotopoulos S, MacIsaac RJ (2010) The clinical significance of hyperfiltration in diabetes. Diabetologia 53:2093–2104

    CAS  PubMed  Google Scholar 

  37. Sasson AN, Cherney DZ (2012) Renal hyperfiltration related to diabetes mellitus and obesity in human disease. World J Diabetes 3:1–6

    PubMed Central  PubMed  Google Scholar 

  38. Blantz RC, Singh P (2014) Glomerular and tubular function in the diabetic kidney. Adv Chronic Kidney Dis 21(3):297–303

    PubMed  Google Scholar 

  39. Tomaszewski M, Charchar FJ, Maric C, McClure J, Crawford L, Grzeszczak W et al (2007) Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int 71:816–821

    CAS  PubMed  Google Scholar 

  40. Vaziri ND, Kaupke CJ, Barton CH, Gonzales E (1992) Plasma concentration and urinary excretion of erythropoietin in adult nephrotic syndrome. Am J Med 92:35–40

    CAS  PubMed  Google Scholar 

  41. Bays B, Serra A, Junc J, Lauzurica R (1988) Successful treatment of anaemia of nephritic syndrome with recombinant human erythropoietin. Nephrol Dial Transplant 13:1894–1895

    Google Scholar 

  42. Ishimitsu T, Ono H, Sugiyama M, Asakawa H, Oka K, Numabe A et al (1996) Successful erythropoietin treatment for severe anemia in nephrotic syndrome without renal dysfunction. Nephron 74:607–610

    CAS  PubMed  Google Scholar 

  43. Nowicki M, Kokot F, Kokot M, Bar A, Dulawa J (1994) Renal clearance of endogenous erythropoietin in patients with proteinuria. Int Urol Nephrol 26:691–699

    CAS  PubMed  Google Scholar 

  44. Sasatomi Y, Ito K, Abe Y, Miyake K, Ogahara S, Nakashima H, Saito T (2012) Association of hypoalbuminemia with severe anemia in patients with diabetic nephrosclerosis. Ren Fail 34(2):189–193

    CAS  PubMed  Google Scholar 

  45. Thomas MC, Tsalamandris C, MacIsaac R, Medley T, Kingwell B, Cooper ME et al (2004) Low-molecular-weight AGEs are associated with GFR and anemia in patients with type 2 diabetes. Kidney Int 66:1167–1172

    CAS  PubMed  Google Scholar 

  46. Okon EB, Chung AW, Rauniyar P, Padilla E, Tejerina T, McManus BM et al (2005) Compromised arterial function in human type 2 diabetic patients. Diabetes 54:2415–2423

    CAS  PubMed  Google Scholar 

  47. Téllez Gil L, Roselló AM, Collado Torres A, Moreno RL, Antonio Ferrón Orihuela J (2001) Modulation of soluble phases of endothelial/leukocyte adhesion molecule 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 with interleukin-1 beta after experimental endotoxic challenge. Crit Care Med 29:776–781

    PubMed  Google Scholar 

  48. Faquin WC, Schneider TJ, Goldberg MA (1992) Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood 79:1987–1994

    CAS  PubMed  Google Scholar 

  49. Leng HM, Folb PI (1996) Erythropoiesis and erythropoietin synthesis during aseptic acute inflammation. Inflamm Res 45:541–545

    CAS  PubMed  Google Scholar 

  50. Thomas MC, Tsalamandris C, Macisaac RJ, Jerums G (2006) Functional erythropoietin deficiency in patients with type 2 diabetes and anaemia. Diabet Med 23:502–509

    CAS  PubMed  Google Scholar 

  51. Bhatia V, Chaudhuri A, Tomar R, Dhindsa S, Ghanim H, Dandona P (2006) Low testosterone and high C-reactive protein concentrations predict low hematocrit in type 2 diabetes. Diabetes Care 29:2289–2294

    CAS  PubMed  Google Scholar 

  52. Johnson CS, Keckler DJ, Topper MI, Braunscweiger PG, Furmanski P (1989) In vivo hematopoietic effects of recombinant interleukin-1 alpha in mice: stimulation of granulocytic, monocytic, megakaryocytic, and early erythroid progenitors, suppression of late-stage erythropoiesis, and reversal of erythroid suppression with erythropoietin. Blood 73:678–683

    CAS  PubMed  Google Scholar 

  53. Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS (1995) Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 85:3183–3190

    CAS  PubMed  Google Scholar 

  54. Van Der Putten K, Braam B, Jie KE, Gaillard CA (2008) Mechanisms of disease: erythropoietin resistance in patients with both heart and kidney failure. Nat Clin Pract Nephrol 4:47–57

    PubMed  Google Scholar 

  55. Shuvaev VV, Fujii J, Kawasaki Y, Iton H, Hamaoka R, Barbier A et al (1999) Glycation of apolipoprotein E impairs its binding to heparin: identification of the major glycation site. Biochem Biophys Acta 1454:296–308

    CAS  PubMed  Google Scholar 

  56. Brito PL, Fioretto P, Drummond K, Kim Y, Steffes MW, Basgen JM et al (1998) Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int 53:754–761

    CAS  PubMed  Google Scholar 

  57. Mise K, Hoshino J, Ueno T, Imafuku A, Kawada M, Sumida K, et al (2014) Impact of tubulointerstitial lesions on anaemia in patients with biopsy proven diabetic nephropathy. Diabetes Med. doi:10.1111/dme.12633 (Epub ahead of print)

  58. Bosman DR, Osborne CA, Marsden JT, McDougall IC, Gardner WN, Watkins PJ (2002) Erythropoietin response to hypoxia in patients with diabetic autonomic neuropathy and non-diabetic chronic renal failure. Diabet Med 19:65–69

    CAS  PubMed  Google Scholar 

  59. Matthews MR (1992) Autonomic ganglia in multiple system atrophy and pure autonomic failure. In: Bannister R, Mathias CJ (eds) Autonomic failure: a textbook of disorders of the autonomic nervous system, 3rd edn. Oxford University Press, Oxford, pp 592–621

    Google Scholar 

  60. Van Ingelghem E, Van Zandijcke M, Lammens M (1994) Pure autonomic failure: a new case with clinical, biochemical, and necropsy data. J Neurol Neurosurg Psychiatry 57:745–747

    PubMed Central  PubMed  Google Scholar 

  61. Biaggioni I, Robertson D, Krantz S, Jones M, Haile V (1994) The anemia of primary autonomic failure and its reversal with recombinant erythropoietin. Ann Intern Med 121:181–186

    CAS  PubMed  Google Scholar 

  62. Finne PH, Skoglund RW (1970) Erythropoietin production in the rat following splanchnic neurectomy. J Lab Clin Med 76:103–106

    CAS  PubMed  Google Scholar 

  63. Mayaudon H, Dupuy O, Dolz M, Bordier L, Belmejdoub G, Garcin JM et al (2002) Influence of blood pressure profile on erythropoietin levels in diabetics. Arch Mal Coeur Vaiss 95:743–746

    CAS  PubMed  Google Scholar 

  64. Jeffrey RF, Kendall RG, Prabhu P, Norfolk DR, Will EJ, Davison AM (1995) Reestablishment of erythropoietin responsiveness in end-stage renal failure following renal transplantation. Clin Nephrol 44:241–247

    CAS  PubMed  Google Scholar 

  65. Kim MK, Baek KH, Lim DJ, Kim YK, Kang MI, Lee KW, Song KH (2010) Erythropoetin response to anemia and its association with autonomic neuropathy in type 2 diabetic patients without advanced renal failure. J Diabetes Complic 24(2):90–95

    Google Scholar 

  66. Kim YC, Mungunsukh O, McCart EA, Roehrich PJ, Yee DK, Day RM (2014) Mechanism of erythropoietin regulation by angiotensin II. Mol Pharmacol 85(6):898–908

    PubMed  Google Scholar 

  67. Vlachakos DV, Marathias KP, Madias NE (2010) The role of the rennin angiotensin system in the regulation of erythropoiesis. Am J Kidney Dis 56:558–565

    Google Scholar 

  68. Donnelly S (2001) Why is erythropoietin made in the kidney? The kidney functions as a critmeter. Am J Kidney Dis 38:415–425

    CAS  PubMed  Google Scholar 

  69. Christlieb AR (1976) Renin–angiotensin–aldosterone system in diabetes mellitus. Diabetes 25(Suppl 2):820–825

    CAS  PubMed  Google Scholar 

  70. Donnelly S, Shah BR (1999) Erythropoietin deficiency in hyporeninemia. Am J Kidney Dis 33:947–953

    CAS  PubMed  Google Scholar 

  71. Christlieb AR, Munichoodappa C, Braaten JT (1974) Decreased response of plasma renin activity to orthostasis in diabetic patients with orthostatic hypotension. Diabetes 23:835–840

    CAS  PubMed  Google Scholar 

  72. Christlieb AR, Kaldany A, D’elia JA (1976) Plasma renin activity and hypertension in diabetes mellitus. Diabetes 25:969–974

    CAS  PubMed  Google Scholar 

  73. Azizi M, Rousseau A, Ezan E, Guyene TT, Michelet S, Grognet JM et al (1996) Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural steam cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Investig 97:839–844

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Hayashi T, Suzuki A, Shoji T, Togawa M, Okada N, Tsubakihara Y et al (2000) Cardiovascular effects of normalizing the hematocrit level during erythropoietin therapy in predialysis patients with chronic renal failure. Am J Kidney Dis 35:250–256

    CAS  PubMed  Google Scholar 

  75. Inoue A, Babazono T, Iwamoto Y (2008) Effects of the renin–angiotensin system blockade on hemoglobin levels in type 2 diabetic patients with chronic kidney disease. Am J Hypertens 21:317–322

    CAS  PubMed  Google Scholar 

  76. Saito A, Kaseda R, Hosojima M, Sato H (2010) Proximal tubule cell hypothesis for cardiorenal syndrome in diabetes. Int J Nephrol 2011:957164. doi:10.4061/2011/957164

    PubMed Central  PubMed  Google Scholar 

  77. Wang S, Denichilo M, Brubaker C, Hirschberg R (2001) Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int 60:96–105

    CAS  PubMed  Google Scholar 

  78. Thomas MC, Burns WC, Cooper ME (2005) Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis 12:177–186

    CAS  PubMed  Google Scholar 

  79. Vallon V, Thomson SC (2012) Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 74:351–375

    CAS  PubMed  Google Scholar 

  80. Thomson SC, Vallon V, Blantz RC (2004) Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Renal Physiol 286:F8–F15

    CAS  PubMed  Google Scholar 

  81. Eckardt KU, Kurtz A, Bauer C (1989) Regulation of erythropoietin production is related to proximal tubular function. Am J Physiol 256:F942–F947

    CAS  PubMed  Google Scholar 

  82. Kurtz A, Eckardt KU (1990) Erythropoietin production in chronic renal disease before and after transplantation. Contrib Nephrol 87:15–25

    CAS  PubMed  Google Scholar 

  83. Schultze RG, Weisser F, Bricker NS (1972) The influence of uremia on fractional sodium reabsorption by the proximal tubule of rats. Kidney Int 2:59–65

    CAS  PubMed  Google Scholar 

  84. Brezis M, Rosen S (1995) Hypoxia of the renal medulla—its implications for disease. N Engl J Med 332:647–655

    CAS  PubMed  Google Scholar 

  85. Donnelly S, Shah BR (1996) Erythropoietin deficiency in type I diabetic patients is associated with decrease in fractional sodium reabsorption. J Am Soc Nephrol 7:1356

    Google Scholar 

  86. Nagai T, Yasuoka Y, Izumi Y, Horikawa K, Kimura M, Nakayama Y et al (2014) Revealuation of erythropoietin production by the nephron. Biochem Biophys Res Commun 449(2):222–228

    CAS  PubMed  Google Scholar 

  87. Baldini P, Incerpi S, Lambert-Gardini S, Spinedi A, Luly P (1989) Membrane lipid alterations and Na+-pumping activity in erythrocytes from IDDM and NIDDM subjects. Diabetes 38:825–831

    CAS  PubMed  Google Scholar 

  88. Kowluru R, Bitensky MW, Kowluru A, Dembo M, Keaton PA, Buican T (1989) Reversible sodium pump defect and swelling in the diabetic rat erythrocyte: effect on filterability and implications for microangiopathy. Proc Natl Acad Sci USA 86:3327–3331

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Brown CD, Ghali HS, Zhao Z, Thomas LL, Friedman EA (2005) Association of reduced red blood cell deformability and diabetic nephropathy. Kidney Int 67:295–300

    PubMed  Google Scholar 

  90. Elishkevitz K, Fusman R, Koffler M, Shapira I, Avitzour D, Arber N et al (2002) Rheological determinants of red blood cell aggregation in diabetic patients in relation to their metabolic control. Diabet Med 19:152–156

    CAS  PubMed  Google Scholar 

  91. Resmi H, Akhunlar H, Temiz Artmann A, Güner G (2005) In vitro effects of high glucose concentrations on membrane protein oxidation, G-actin and deformability of 23 human erythrocytes. Cell Biochem Funct 23:163–168

    CAS  PubMed  Google Scholar 

  92. Vlassara H, Valinsky J, Brownlee M, Cerami C, Nishimoto S, Cerami A (1987) Advanced glycation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages. A model for turnover of aging cells. J Exp Med 166:539–549

    CAS  PubMed  Google Scholar 

  93. Manodori AB, Kuypers FA (2002) Altered red cell turnover in diabetic mice. J Lab Clin Med 140:161–165

    PubMed  Google Scholar 

  94. Rigal D, Monestier M, Baboin-Jaubert M, Chabaud-Sassulas D, Marseglia GL, Ville D et al (1985) Evaluation of erythrocyte survival by the determination of glycosylated haemoglobin. Clinical value. Presse Med 14:521–523

    CAS  PubMed  Google Scholar 

  95. Wagstaff AJ, Goa KL (2002) Rosiglitazone: a review of its use in the management of type 2 diabetes mellitus. Drugs 62:1805–1837

    CAS  PubMed  Google Scholar 

  96. Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES et al (2003) Thiazolidinedion use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation 108:2941–2948

    PubMed  Google Scholar 

  97. Maarani Y, Stessman J (2005) Mild reversible pancytopenia induced by rosiglitazone. Diabetes Care 28:1536

    Google Scholar 

  98. Raptis AE, Bacharaki D, Mazioti M, Marathias KP, Markakis KP, Raptis SA et al (2012) Anemia due to coadministration of renin–angiotensin-system inhibitors and PPARγ agonists in uncomplicated diabetic patients. Exp Clin Endocrinol Diabetes 120:416–419

    CAS  PubMed  Google Scholar 

  99. Kouroumichakis I, Papanas N, Zarogoulidis P, Liakopoulos V, Maltezos E, Mikhailidis DP (2012) Fibrates: therapeutic potential for diabetic nephropathy? Eur J Intern Med 23:309–316

    CAS  PubMed  Google Scholar 

  100. Poyart C, Marden MC, Kister J (1994) Bezafibrate derivatives as potent effectors of hemoglobin. Methods Enzymol 232:496–513

    CAS  PubMed  Google Scholar 

  101. Fazio S, Linton MF (2010) High-density lipoprotein therapeutics and cardiovascular prevention. J Clin Lipidiol 4:411–419

    Google Scholar 

  102. Perutz MF, Poyart C (1983) Bezafibrate lowers oxygen affinity of hemoglobin. Lancet 2(8355):881–882

    CAS  PubMed  Google Scholar 

  103. Balakumar P, Kadian S, Mahadevan N (2012) Are PPAR alpha agonists a rational therapeutic strategy for preventing abnormalities of the diabetic kidney? Pharmacol Res 65:430–436

    CAS  PubMed  Google Scholar 

  104. Florentin M, Liberopoulos EN, Mikhailidis DP, Elisaf MS (2008) Fibrate associated adverse effects beyond muscle and livertoxicity. Curr Pharm Des 14:574–587

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dounousi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappa, M., Dounousi, E., Duni, A. et al. Less known pathophysiological mechanisms of anemia in patients with diabetic nephropathy. Int Urol Nephrol 47, 1365–1372 (2015). https://doi.org/10.1007/s11255-015-1012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-015-1012-2

Keywords

Navigation