Skip to main content

Advertisement

Log in

Effects of sensory neuron-specific receptor agonist on bladder function in a rat model of cystitis induced by cyclophosphamide

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of activation of sensory neuron-specific receptors (SNSRs) on cyclophosphamide (CYP) bladder overactivity in rats.

Methods

Female Sprague–Dawley rats (235–258 g) were used. Rats were injected with either CYP (200 mg/kg, intraperitoneally) or saline (control). Continuous cystometrograms (0.04 ml/min) were recorded 48 h after CYP or saline injection under urethane anesthesia. After stable micturition cycles were established, a selective rat SNSR1 agonist, bovine adrenal medulla 8-22 (BAM8-22), was administered intravenously or intrathecally.

Results

Cyclophosphamide treatment-induced higher baseline pressure and shorter intercontraction intervals compared with the control group. Intravenous administration of BAM8-22 at 10, 30 and 100 μg/kg significantly increased intercontraction intervals in the CYP-treated group. Intrathecal administration of BAM8-22 at 0.03, 0.1 and 0.3 μg also significantly increased intercontraction intervals in the CYP-treated group. Intravenous or intrathecal administration of BAM8-22 did not change baseline pressure or maximum voiding pressure in the CYP-treated group.

Conclusions

These findings indicate that activation of SNSRs can suppress CYP-induced bladder overactivity, probably due to suppression of bladder afferent activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Groat WC (1993) Anatomy and physiology of the lower urinary tract. Urol Clin North Am 20:383–401

    PubMed  Google Scholar 

  2. Vera PL, Nadelhaft I (1992) Afferent and sympathetic innervation of the dome and the base of the urinary bladder of the female rat. Brain Res Bull 29:651–658

    Article  PubMed  CAS  Google Scholar 

  3. Maggi CA, Conte B (1990) Effect of urethane anesthesia on the micturition reflex in capsaicin-treated rats. J Auton Nerv Syst 30:247–251

    Article  PubMed  CAS  Google Scholar 

  4. Yoshimura N, Chancellor MB (2002) Current and future pharmacological treatment for overactive bladder. J Urol 168:1897–1913

    Article  PubMed  CAS  Google Scholar 

  5. Oyama T, Homan T, Kyotani J, Oka M (2012) Effects of tramadol on pain-related behaviors and bladder overactivity in rodent cystitis models. Eur J Pharmacol 676:75–80

    Article  PubMed  CAS  Google Scholar 

  6. Yoshikawa S, Oguchi T, Funahashi Y, de Groat WC, Yoshimura N (2012) Glycine transporter type 2 (GlyT2) inhibitor ameliorates bladder overactivity and nociceptive behavior in rats. Eur Urol 62:704–712

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Chuang YC, Tyagi P, Huang CC, Chancellor MB, Yoshimura N (2012) Mechanisms and urodynamic effects of a potent and selective EP4 receptor antagonist, MF191, on cyclophosphamide and prostaglandin E2-induced bladder overactivity in rats. BJU Int 110:1558–1564

    Article  PubMed  CAS  Google Scholar 

  8. Lembo PM, Grazzini E, Groblewski T, O’Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, Labarre M, Gosselin M, Fortin Y, Banville D, Shen SH, Ström P, Payza K, Dray A, Walker P, Ahmad S (2002) Proenkephalin a gene products activate a new family of sensory neuron–specific GPCRs. Nat Neurosci 5:201–209

    Article  PubMed  CAS  Google Scholar 

  9. Dong X, Han SK, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632

    Article  PubMed  CAS  Google Scholar 

  10. Bender E, Buist A, Jurzak M, Langlois X, Baggerman G, Verhasselt P, Ercken M, Guo HQ, Wintmolders C, Van den Wyngaert I, Van Oers I, Schoofs L, Luyten W (2002) Characterization of an orphan G protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. Proc Natl Acad Sci USA 99:8573–8578

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI (2002) Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Galpha q/11 pathway. Proc Natl Acad Sci USA 99:14740–14745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci USA 100:10043–10048

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Grazzini E, Puma C, Roy MO, Yu XH, O’Donnell D, Schmidt R, Dautrey S, Ducharme J, Perkins M, Panetta R, Laird JM, Ahmad S, Lembo PM (2004) Sensory neuron-specific receptor activation elicits central and peripheral nociceptive effects in rats. Proc Natl Acad Sci USA 101:7175–7180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Chen T, Cai Q, Hong Y (2006) Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (Tyr6)-gamma2-MSH-6-12 inhibit formalin-evoked nociception and neuronal Fos-like immunoreactivity in the spinal cord of the rat. Neuroscience 141:965–975

    Article  PubMed  CAS  Google Scholar 

  15. Honda M, Takenaka A, Inoue S, Chancellor MB, Yoshimura N (2011) Sensory neurone-specific receptor-mediated regulation of micturition reflex in urethane-anaesthetized rats. BJU Int 109:628–633

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dores RM, Mcdonald LK, Steveson TC, Sei CA (1990) The molecular evolution of neuropeptides: prospects for the ‘90s. Brain Behav Evol 36:80–99

    Article  PubMed  CAS  Google Scholar 

  17. Khachaturian H, Lewis ME, Watson SJ (1983) Colocalization of proenkephalin peptides in rat brain neurons. Brain Res 279:369–373

    Article  PubMed  CAS  Google Scholar 

  18. Pittius CW, Seizinger BR, Pasi A, Mehraein P, Herz A (1984) Distribution and characterization of opioid peptides derived from proenkephalin A in human and rat central nervous system. Brain Res 304:127–136

    Article  PubMed  CAS  Google Scholar 

  19. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  20. Avelino A, Cruz F (2006) TRPV1 (vanilloid receptor) in the urinary tract: expression, function and clinical applications. Naunyn Schmiedebergs Arch Pharmacol 373:287–299

    Article  PubMed  CAS  Google Scholar 

  21. Lanteri-Minet M, Bon K, de Pommery J, Michiels JF, Menétrey D (1995) Cyclophosphamide cystitis as a model of visceral pain in rats: model elaboration and spinal structures involved as revealed by the expression of c-Fos and Krox-24 proteins. Exp Brain Res 105:220–232

    Article  PubMed  CAS  Google Scholar 

  22. Dinis P, Charrua A, Avelino A, Yaqoob M, Bevan S, Nagy I, Cruz F (2004) Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci 24:11253–11263

    Article  PubMed  CAS  Google Scholar 

  23. Szallasi A, Nilsson S, Farkas-Szallasi T, Blunberg PM, Hökfelt T, Lundberg JM (1995) Vanilloid (capsaicin) receptors in the rat: distribution in the brain, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment. Brain Res 703:175–183

    Article  PubMed  CAS  Google Scholar 

  24. Vizzard MA (2000) Alterations in spinal cord Fos protein expression induced by bladder stimulation following cystitis. Am J Physiol Regul Integr Comp Physiol 278:R1027–R1039

    PubMed  CAS  Google Scholar 

  25. Miyazato M, Sasatomi K, Hiragata S, Sugaya K, Chancellor MB, de Groat WC, Yoshimura N (2008) GABA receptor activation in the spinal cord decreases detrusor overactivity in spinal cord injured rats. J Urol 179:1178–1183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Rice AS, McMahon SB (1994) Pre-emptive intrathecal administration of an NMDA receptor antagonist (AP-5) prevents hyper-reflexia in a model of persistent vesical pain. Pain 57:335–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from NIH (DK088836 and P01 DK093424) and DOD (W81XWH-12-1-0565).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Yoshimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honda, M., Yoshimura, N., Kawamoto, B. et al. Effects of sensory neuron-specific receptor agonist on bladder function in a rat model of cystitis induced by cyclophosphamide. Int Urol Nephrol 46, 1953–1959 (2014). https://doi.org/10.1007/s11255-014-0734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-014-0734-x

Keywords

Navigation