Skip to main content

Advertisement

Log in

Positive association of vigorous and moderate physical activity volumes with skeletal muscle mass but not bone density or metabolism markers in hemodialysis patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

To determine whether vigorous and moderate physical activity volumes are associated with skeletal muscle loss and chronic kidney disease–mineral and bone disorder (CKD-MBD) in hemodialysis (HD) patients.

Methods

Skeletal muscle index (SMI) was measured using a bioelectrical impedance plethysmograph, and grip strength using a hand dynamometer, in 32 HD patients and 16 healthy controls. In HD patients, bone density was measured using digital image processing, and serum bone metabolism markers were measured as surrogate markers for CKD-MBD. Vigorous and moderate physical activity volumes of HD patients were measured using an activity monitor for 1 week, and associations between vigorous and moderate physical activity volumes and SMI, grip strength, and surrogate markers for CKD-MBD were investigated.

Results

SMI of HD patients (4.60 ± 0.98 kg/m2) was significantly lower than that of controls (5.55 ± 0.80 kg/m2, p < 0.01). Grip strength of HD patients (19.9 ± 7.74 kg) was also significantly lower than that of controls (33.0 ± 8.94 kg, p < 0.01). In HD patients, vigorous and moderate physical activity volumes were significantly positively associated with SMI (β = 0.309, p = 0.023) but not grip strength (β = 0.231, p = 0131) after adjustment for age, sex, and HD duration. They were not associated with bone density (β = 0.106, p = 0.470) or any markers of bone metabolism.

Conclusions

Vigorous and moderate physical activity volumes were positively associated with skeletal muscle mass but not skeletal muscle strength or surrogate markers for CKD-MBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonanni A, Mannucci I, Verzola D, Sofia A, Saffioti S, Gianetta E, Garibotto G (2011) Protein-energy wasting and mortality in chronic kidney disease. Int J Environ Res Public Health 8(5):1631–1654. doi:10.3390/ijerph8051631

    Article  PubMed Central  PubMed  Google Scholar 

  2. Remuzzi A (2007) Vitamin D, insulin resistance, and renal disease. Kidney Int 71(2):96–98. doi:10.1038/sj.ki.5002047

    Article  CAS  PubMed  Google Scholar 

  3. Cheema B, Abas H, Smith B, O’Sullivan AJ, Chan M, Patwardhan A, Kelly J, Gillin A, Pang G, Lloyd B, Berger K, Baune BT, Singh MF (2010) Investigation of skeletal muscle quantity and quality in end-stage renal disease. Nephrology (Carlton) 15(4):454–463. doi:10.1111/j.1440-1797.2009.01261.x

    Article  CAS  Google Scholar 

  4. Stenvinkel P, Heimburger O, Lindholm B (2004) Wasting, but not malnutrition, predicts cardiovascular mortality in end-stage renal disease. Nephrol Dial Transpl 19(9):2181–2183. doi:10.1093/ndt/gfh296

    Article  Google Scholar 

  5. Desmeules S, Levesque R, Jaussent I, Leray-Moragues H, Chalabi L, Canaud B (2004) Creatinine index and lean body mass are excellent predictors of long-term survival in haemodiafiltration patients. Nephrol Dial Transpl 19(5):1182–1189. doi:10.1093/ndt/gfh016

    Article  Google Scholar 

  6. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15(8):2208–2218. doi:10.1097/01.ASN.0000133041.27682.A2

    Article  CAS  PubMed  Google Scholar 

  7. Young EW, Albert JM, Satayathum S, Goodkin DA, Pisoni RL, Akiba T, Akizawa T, Kurokawa K, Bommer J, Piera L, Port FK (2005) Predictors and consequences of altered mineral metabolism: the dialysis outcomes and practice patterns study. Kidney Int 67(3):1179–1187. doi:10.1111/j.1523-1755.2005.00185.x

    Article  CAS  PubMed  Google Scholar 

  8. Kalantar-Zadeh K, Kuwae N, Regidor DL, Kovesdy CP, Kilpatrick RD, Shinaberger CS, McAllister CJ, Budoff MJ, Salusky IB, Kopple JD (2006) Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 70(4):771–780. doi:10.1038/sj.ki.5001514

    Article  CAS  PubMed  Google Scholar 

  9. Floege J, Kim J, Ireland E, Chazot C, Drueke T, de Francisco A, Kronenberg F, Marcelli D, Passlick-Deetjen J, Schernthaner G, Fouqueray B, Wheeler DC (2011) Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transpl 26(6):1948–1955. doi:10.1093/ndt/gfq219

    Article  CAS  Google Scholar 

  10. Brebner NS, Moens NM, Runciman JR (2006) Evaluation of a treadmill with integrated force plates for kinetic gait analysis of sound and lame dogs at a trot. Vet Comp Orthop Traumatol 19(4):205–212

    CAS  PubMed  Google Scholar 

  11. Iimori S, Mori Y, Akita W, Kuyama T, Takada S, Asai T, Kuwahara M, Sasaki S, Tsukamoto Y (2012) Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients—a single-center cohort study. Nephrol Dial Transpl 27(1):345–351. doi:10.1093/ndt/gfr317

    Article  CAS  Google Scholar 

  12. Taal MW, Roe S, Masud T, Green D, Porter C, Cassidy MJ (2003) Total hip bone mass predicts survival in chronic hemodialysis patients. Kidney Int 63(3):1116–1120. doi:10.1046/j.1523-1755.2003.00837.x

    Article  PubMed  Google Scholar 

  13. Heiwe S, Tollback A, Clyne N (2001) Twelve weeks of exercise training increases muscle function and walking capacity in elderly predialysis patients and healthy subjects. Nephron 88(1):48–56

    Article  CAS  PubMed  Google Scholar 

  14. Storer TW, Casaburi R, Sawelson S, Kopple JD (2005) Endurance exercise training during haemodialysis improves strength, power, fatigability and physical performance in maintenance haemodialysis patients. Nephrol Dial Transpl 20(7):1429–1437. doi:10.1093/ndt/gfh784

    Article  Google Scholar 

  15. Mustata S, Groeneveld S, Davidson W, Ford G, Kiland K, Manns B (2011) Effects of exercise training on physical impairment, arterial stiffness and health-related quality of life in patients with chronic kidney disease: a pilot study. Int Urol Nephrol 43(4):1133–1141. doi:10.1007/s11255-010-9823-7

    Article  PubMed  Google Scholar 

  16. Castaneda C, Gordon PL, Uhlin KL, Levey AS, Kehayias JJ, Dwyer JT, Fielding RA, Roubenoff R, Singh MF (2001) Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. A randomized, controlled trial. Ann Intern Med 135(11):965–976

    Article  CAS  PubMed  Google Scholar 

  17. Hootman JM (2009) Physical activity guidelines for Americans: an opportunity for athletic trainers. J Athl Train 44(1):5–6

    Google Scholar 

  18. Kawakubo K (2000) Physical activity and healthy Japan 21. Nihon Rinsho 58(Suppl):532–537

    PubMed  Google Scholar 

  19. Dunlop M, Murray AD (2013) Major limitations in knowledge of physical activity guidelines among UK medical students revealed: implications for the undergraduate medical curriculum. Br J Sports Med 47(11):718–720. doi:10.1136/bjsports-2012-091891

    Article  PubMed  Google Scholar 

  20. Ainsworth BE, Haskell WL, Leon AS, Jacobs DR Jr, Montoye HJ, Sallis JF, Paffenbarger RS Jr (1993) Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25(1):71–80

    Article  CAS  PubMed  Google Scholar 

  21. Soen S, Fukunaga M, Sugimoto T, Sone T, Fujiwara S, Endo N, Gorai I, Shiraki M, Hagino H, Hosoi T, Ohta H, Yoneda T, Tomomitsu T (2013) Diagnostic criteria for primary osteoporosis: year 2012 revision. J Bone Miner Metab 31(3):247–257. doi:10.1007/s00774-013-0447-8

    Article  PubMed  Google Scholar 

  22. Delmonico MJ, Harris TB, Lee JS, Visser M, Nevitt M, Kritchevsky SB, Tylavsky FA, Newman AB (2007) Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc 55(5):769–774. doi:10.1111/j.1532-5415.2007.01140.x

    Article  PubMed  Google Scholar 

  23. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61(10):1059–1064

    Article  PubMed  Google Scholar 

  24. (2005) K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 45(4 Suppl 3):S1–S153

  25. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T, Guralnik JM, Ferrucci L (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 95(5):1851–1860. doi:10.1152/japplphysiol.00246.2003

    PubMed  Google Scholar 

  26. Al Snih S, Markides KS, Ottenbacher KJ, Raji MA (2004) Hand grip strength and incident ADL disability in elderly Mexican Americans over a seven-year period. Aging Clin Exp Res 16(6):481–486

    Article  PubMed  Google Scholar 

  27. Shen W, Wang Z, Tang H, Heshka S, Punyanitya M, Zhu S, Lei J, Heymsfield SB (2003) Volume estimates by imaging methods: model comparisons with visible woman as the reference. Obes Res 11(2):217–225. doi:10.1038/oby.2003.34

    Article  PubMed Central  PubMed  Google Scholar 

  28. Svendsen OL, Haarbo J, Hassager C, Christiansen C (1993) Accuracy of measurements of body composition by dual-energy x-ray absorptiometry in vivo. Am J Clin Nutr 57(5):605–608

    CAS  PubMed  Google Scholar 

  29. Di Iorio BR, Scalfi L, Terracciano V, Bellizzi V (2004) A systematic evaluation of bioelectrical impedance measurement after hemodialysis session. Kidney Int 65(6):2435–2440. doi:10.1111/j.1523-1755.2004.00660.x

    Article  PubMed  Google Scholar 

  30. Nakao T, Kanazawa Y, Nagaoka Y, Iwasawa H, Uchinaga A, Matsumoto H, Okada T, Yoshino M (2007) Body protein index based on bioelectrical impedance analysis is a useful new marker assessing nutritional status: applications to patients with chronic renal failure on maintenance dialysis. Contrib Nephrol 155:18–28. doi:10.1159/0000100993

    Article  PubMed  Google Scholar 

  31. Kaysen GA, Zhu F, Sarkar S, Heymsfield SB, Wong J, Kaitwatcharachai C, Kuhlmann MK, Levin NW (2005) Estimation of total-body and limb muscle mass in hemodialysis patients by using multifrequency bioimpedance spectroscopy. Am J Clin Nutr 82(5):988–995

    CAS  PubMed  Google Scholar 

  32. Donadio C, Consani C, Ardini M, Bernabini G, Caprio F, Grassi G, Lucchesi A, Nerucci B (2005) Estimate of body water compartments and of body composition in maintenance hemodialysis patients: comparison of single and multifrequency bioimpedance analysis. J Ren Nutr 15(3):332–344

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from The Kidney Foundation, Japan (JFKB-13-49).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Morishita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morishita, Y., Kubo, K., Miki, A. et al. Positive association of vigorous and moderate physical activity volumes with skeletal muscle mass but not bone density or metabolism markers in hemodialysis patients. Int Urol Nephrol 46, 633–639 (2014). https://doi.org/10.1007/s11255-014-0662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-014-0662-9

Keywords

Navigation