Skip to main content
Log in

Clinical and experimental use of probiotic formulations for management of end-stage renal disease: an update

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Nowadays kidney transplantation and dialysis are the only available therapies for end-stage renal disease management. They imply a considerable increase in plasma concentration of uremic wastes including creatinine, urea and uric acid. These invasive procedures impose high social costs that prevent many low-income countries from adequately treating the patients affected by renal insufficiency. For years, many studies on uremic waste removal through the gut lumen have been published with conflicting results. More recently, microencapsulation of probiotic bacteria has been performed by different research groups. This evidence has opened a new perspective on therapeutic modification of gut bacterial flora in the context of renal disease. This review gives an overview of the experimental and clinical use of probiotic formulations in the context of end-stage renal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noel D, Landais P (2012) Epidemiology of chronic kidney disease. La Revue du praticien 62(1):38–42

    PubMed  Google Scholar 

  2. National Kidney F (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266

    Google Scholar 

  3. United States Renal Data System (USRDS) (2012) Annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States, National Institutes of Health, National Institute of diabetes and digestive and kidney diseases, Bethesda, MD

  4. Iannitti T, Palmieri B (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29(6):701–725

    Article  PubMed  CAS  Google Scholar 

  5. Yasui H, Shida K, Matsuzaki T, Yokokura T (1999) Immunomodulatory function of lactic acid bacteria. Antonie Van Leeuwenhoek 76:383–389

  6. Link-Amster H, Rochat F, Saudan KY, Mignot O, Aeschlimann JM (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. Fems Immunol Med Microbiol 10:55–63

    Google Scholar 

  7. Gill H, Rutherfurd K, Cross M, Gopal P (2001) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutrition 74:833–839

    Google Scholar 

  8. Hebuterne X (2003) Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Clin Nutr Metab Care 6(1):49–54

    Google Scholar 

  9. De Simone C, Ciardi A, Grassi A, Lambert Gardini S, Tzantzoglou S, Trinchieri V, Moretti S, Jirillo E (1992) Effect of Bifidobacterium bifidum and Lactobacillus acidophilus on gut mucosa and peripheral blood B lymphocytes. mmunopharmacol Immunotoxicol 14(1–2):331–340

    Article  Google Scholar 

  10. Cross ML, Ganner A, Teilab D, Fray LM (2004) Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. FEMS Immunol Med Microbiol 42(2):173–180

    Article  PubMed  CAS  Google Scholar 

  11. Drakes M, Blanchard T, Czinn S (2004) Bacterial probiotic modulation of dendritic cells. Infect Immun 72(6):3299–3309

    Article  PubMed  CAS  Google Scholar 

  12. Gill HS, Rutherfurd KJ, Cross ML (2001) Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J Clin Immunol 21(4):264–271

    Article  PubMed  CAS  Google Scholar 

  13. Hart AL, Lammers K, Brigidi P, Vitali B, Rizzello F, Gionchetti P, Campieri M, Kamm MA, Knight SC, Stagg AJ (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53(11):1602–1609

    Article  PubMed  CAS  Google Scholar 

  14. Hegazy SK, El-Bedewy MM (2010) Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J Gastroenterol 16(33):4145–4151

    Article  PubMed  CAS  Google Scholar 

  15. Grill JP, Crociani J, Ballongue J (1995) Effect of bifidobacteria on nitrites and nitrosamines. Lett Appl Microbiol 20(5):328–330

    Article  PubMed  CAS  Google Scholar 

  16. Ooi LG, Liong MT (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11(6):2499–2522

    Article  PubMed  CAS  Google Scholar 

  17. Mangione F, Dal Canton A (2011) Chronic kidney disease epidemic: myth and reality. Intern Emerg Med 6(Suppl 1):69–76

    Article  PubMed  Google Scholar 

  18. Vanholder R, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T et al (2001) Uremic toxicity: present state of the art. Int J Artif Organs 24(10):695–725

    PubMed  CAS  Google Scholar 

  19. Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R et al (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63(5):1934–1943

    Article  PubMed  CAS  Google Scholar 

  20. Vanholder R, Van Laecke S, Glorieux G (2008) What is new in uremic toxicity? Pediatr Nephrol 23(8):1211–1221

    Article  PubMed  Google Scholar 

  21. Kestenbaum B, Belozeroff V (2007) Mineral metabolism disturbances in patients with chronic kidney disease. Eur J Clin Invest 37(8):607–622

    Article  PubMed  CAS  Google Scholar 

  22. Lund RJ, Davies MR, Mathew S, Hruska KA (2006) New discoveries in the pathogenesis of renal osteodystrophy. J Bone Miner Metab 24(2):169–171

    Article  PubMed  Google Scholar 

  23. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: improving Global Outcomes (KDIGO). Kidney Int 69(11):1945–1953

    Article  PubMed  CAS  Google Scholar 

  24. Mondry A, Wang Z, Dhar PK (2005) Bone and the kidney: a systems biology approach to the molecular mechanisms of renal osteodystrophy. Curr Mol Med 5(5):489–496

    Article  PubMed  CAS  Google Scholar 

  25. Karpov PF (1992) Disordered intestinal mechanisms in patients with chronic kidney failure. Ter Arkh 64(6):73–77

    PubMed  CAS  Google Scholar 

  26. Rana SV, Bhardwaj SB (2008) Small intestinal bacterial overgrowth. Scand J Gastroenterol 43(9):1030–1037

    Article  PubMed  CAS  Google Scholar 

  27. Simenhoff ML, Saukkonen JJ, Burke JF, Wesson LG Jr, Schaedler RW, Gordon SJ (1978) Bacterial populations of the small intestine in uremia. Nephron 22(1–3):63–68

    Article  PubMed  CAS  Google Scholar 

  28. Strid H, Simren M, Stotzer PO, Ringstrom G, Abrahamsson H, Bjornsson ES (2003) Patients with chronic renal failure have abnormal small intestinal motility and a high prevalence of small intestinal bacterial overgrowth. Digestion 67(3):129–137

    Article  PubMed  Google Scholar 

  29. Bures J, Cyrany J, Kohoutova D, Forstl M, Rejchrt S, Kvetina J, Vorisek V, Kopacova M (2010) Small intestinal bacterial overgrowth syndrome. World J Gastroenterol 16(24):2978–2990

    Article  PubMed  CAS  Google Scholar 

  30. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, Desantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315

    Google Scholar 

  31. Koga N, Nomura G, Yamagata Y, Koga T (1982) Ureteric pain in patients with chronic renal failure on hemodialysis. Diagnostic approach with ultrasonography and computer tomography. Nephron 31:55–58

    Google Scholar 

  32. Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Morgan C, Samuel S, Klarenbach SW, Curhan GC, Tonelli M (2012) Kidney stones and kidney function loss: a cohort study. BMJ 345:e5287

  33. Curhan GC, Willett WC, Speizer FE, Stampfer MJ (2001) Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int 59(6):2290–2298

    PubMed  CAS  Google Scholar 

  34. Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Invest 115(10):2598–2608

    Google Scholar 

  35. Abratt VR, Reid SJ (2010) Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv Appl Microbiol 72:63–87

    PubMed  CAS  Google Scholar 

  36. Stewart CS, Duncan SH, Cave DR (2004) Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiol Lett 230(1):1–7

    Article  PubMed  CAS  Google Scholar 

  37. Sidhu H, Allison MJ, Chow JM, Clark A, Peck AB (2001) Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J Urol 166(4):1487–1491

    Google Scholar 

  38. Kwak C, Jeong BC, Ku JH, Kim HH, Lee JJ, Huh CS, Baek YJ, Lee SE (2006) Prevention of nephrolithiasis by Lactobacillus in stone-forming rats: a preliminary study. Urol Res 34(4):265–270

    Article  PubMed  Google Scholar 

  39. Murphy C, Murphy S, O’Brien F, O’Donoghue M, Boileau T, Sunvold G, Reinhart G, Kiely B, Shanahan F, O’Mahony L (2009) Metabolic activity of probiotics-oxalate degradation. Vet Microbiol 136(1–2):100–107

    Article  PubMed  CAS  Google Scholar 

  40. Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, Cave DR (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19(6):1197–1203

    Article  PubMed  CAS  Google Scholar 

  41. Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, Pirovano F, Centi C, Ulisse S, Famularo G, De Simone C (2001) Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int 60(3):1097–1105

    Article  PubMed  CAS  Google Scholar 

  42. Troxel SA, Sidhu H, Kaul P, Low RK (2003) Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol 17(3):173–176

    Article  PubMed  Google Scholar 

  43. Lieske JC, Goldfarb DS, De Simone C, Regnier C (2005) Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int 68(3):1244–1249

    Article  PubMed  CAS  Google Scholar 

  44. Goldfarb DS, Modersitzki F, Asplin JR (2007) A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria. Clin J Am Soc Nephrol 2(4):745–749

    Article  PubMed  Google Scholar 

  45. Ferraz RR, Marques NC, Froeder L, Menon VB, Siliano PR, Baxmann AC, Heilberg IP (2009) Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients. Urol Res 37(2):95–100

    Article  PubMed  CAS  Google Scholar 

  46. Hoppe B, von Unruh G, Laube N, Hesse A, Sidhu H (2005) Oxalate degrading bacteria: new treatment option for patients with primary and secondary hyperoxaluria? Urol Res 33(5):372–375

    Article  PubMed  Google Scholar 

  47. Ranganathan N, Patel B, Ranganathan P, Marczely J, Dheer R, Chordia T, Dunn SR, Friedman EA (2005) Probiotic amelioration of azotemia in 5/6th nephrectomized Sprague-Dawley rats. Sci World J 5:652–660

    Article  Google Scholar 

  48. Ranganathan N, Patel BG, Ranganathan P, Marczely J, Dheer R, Pechenyak B, Dunn SR, Verstraete W, Decroos K, Mehta R et al (2006) In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J 52(1):70–79

    Article  PubMed  Google Scholar 

  49. Simenhoff ML, Dunn SR, Zollner GP, Fitzpatrick ME, Emery SM, Sandine WE, Ayres JW (1996) Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 22(1–3):92–96

    PubMed  CAS  Google Scholar 

  50. Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74(2):349–355

    Article  PubMed  CAS  Google Scholar 

  51. Takayama F, Taki K, Niwa T (2003) Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis 41(3 Suppl 1):S142–S145

    Article  PubMed  Google Scholar 

  52. Ando Y, Miyata Y, Tanba K, Saito O, Muto S, Kurosu M, Homma S, Kusano E, Asano Y (2003) Effect of oral intake of an enteric capsule preparation containing Bifidobacterium longum on the progression of chronic renal failure. Nihon Jinzo Gakkai shi 45(8):759–764

    PubMed  Google Scholar 

  53. Meijers BK, De Preter V, Verbeke K, Vanrenterghem Y, Evenepoel P (2010) p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25(1):219–224

    Article  PubMed  CAS  Google Scholar 

  54. Nakabayashi I, Nakamura M, Kawakami K, Ohta T, Kato I, Uchida K, Yoshida M (2011) Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant 26(3):1094–1098

    Article  PubMed  CAS  Google Scholar 

  55. Ranganathan N, Friedman EA, Tam P, Rao V, Ranganathan P, Dheer R (2009) Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Curr Med Res Opin 25(8):1919–1930

    Article  PubMed  CAS  Google Scholar 

  56. Ranganathan N, Ranganathan P, Friedman EA, Joseph A, Delano B, Goldfarb DS, Tam P, Rao AV, Anteyi E, Musso CG (2010) Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv ther 27(9):634–647

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors contributed equally to this work. This review was not supported by grants. The authors thank Professor Decenzio Bonucchi (Nephrology division, Policlinico di Modena, Italy) for his precious advice.

Conflict of interest

The authors certify that they have no conflict of interest with any financial organization regarding the material discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Iannitti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Cerbo, A., Pezzuto, F., Palmieri, L. et al. Clinical and experimental use of probiotic formulations for management of end-stage renal disease: an update. Int Urol Nephrol 45, 1569–1576 (2013). https://doi.org/10.1007/s11255-012-0335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-012-0335-5

Keywords

Navigation