Abstract
Nowadays kidney transplantation and dialysis are the only available therapies for end-stage renal disease management. They imply a considerable increase in plasma concentration of uremic wastes including creatinine, urea and uric acid. These invasive procedures impose high social costs that prevent many low-income countries from adequately treating the patients affected by renal insufficiency. For years, many studies on uremic waste removal through the gut lumen have been published with conflicting results. More recently, microencapsulation of probiotic bacteria has been performed by different research groups. This evidence has opened a new perspective on therapeutic modification of gut bacterial flora in the context of renal disease. This review gives an overview of the experimental and clinical use of probiotic formulations in the context of end-stage renal disease.
Similar content being viewed by others
References
Noel D, Landais P (2012) Epidemiology of chronic kidney disease. La Revue du praticien 62(1):38–42
National Kidney F (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266
United States Renal Data System (USRDS) (2012) Annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States, National Institutes of Health, National Institute of diabetes and digestive and kidney diseases, Bethesda, MD
Iannitti T, Palmieri B (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29(6):701–725
Yasui H, Shida K, Matsuzaki T, Yokokura T (1999) Immunomodulatory function of lactic acid bacteria. Antonie Van Leeuwenhoek 76:383–389
Link-Amster H, Rochat F, Saudan KY, Mignot O, Aeschlimann JM (1994) Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. Fems Immunol Med Microbiol 10:55–63
Gill H, Rutherfurd K, Cross M, Gopal P (2001) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutrition 74:833–839
Hebuterne X (2003) Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Clin Nutr Metab Care 6(1):49–54
De Simone C, Ciardi A, Grassi A, Lambert Gardini S, Tzantzoglou S, Trinchieri V, Moretti S, Jirillo E (1992) Effect of Bifidobacterium bifidum and Lactobacillus acidophilus on gut mucosa and peripheral blood B lymphocytes. mmunopharmacol Immunotoxicol 14(1–2):331–340
Cross ML, Ganner A, Teilab D, Fray LM (2004) Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. FEMS Immunol Med Microbiol 42(2):173–180
Drakes M, Blanchard T, Czinn S (2004) Bacterial probiotic modulation of dendritic cells. Infect Immun 72(6):3299–3309
Gill HS, Rutherfurd KJ, Cross ML (2001) Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J Clin Immunol 21(4):264–271
Hart AL, Lammers K, Brigidi P, Vitali B, Rizzello F, Gionchetti P, Campieri M, Kamm MA, Knight SC, Stagg AJ (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53(11):1602–1609
Hegazy SK, El-Bedewy MM (2010) Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J Gastroenterol 16(33):4145–4151
Grill JP, Crociani J, Ballongue J (1995) Effect of bifidobacteria on nitrites and nitrosamines. Lett Appl Microbiol 20(5):328–330
Ooi LG, Liong MT (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11(6):2499–2522
Mangione F, Dal Canton A (2011) Chronic kidney disease epidemic: myth and reality. Intern Emerg Med 6(Suppl 1):69–76
Vanholder R, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T et al (2001) Uremic toxicity: present state of the art. Int J Artif Organs 24(10):695–725
Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R et al (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63(5):1934–1943
Vanholder R, Van Laecke S, Glorieux G (2008) What is new in uremic toxicity? Pediatr Nephrol 23(8):1211–1221
Kestenbaum B, Belozeroff V (2007) Mineral metabolism disturbances in patients with chronic kidney disease. Eur J Clin Invest 37(8):607–622
Lund RJ, Davies MR, Mathew S, Hruska KA (2006) New discoveries in the pathogenesis of renal osteodystrophy. J Bone Miner Metab 24(2):169–171
Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: improving Global Outcomes (KDIGO). Kidney Int 69(11):1945–1953
Mondry A, Wang Z, Dhar PK (2005) Bone and the kidney: a systems biology approach to the molecular mechanisms of renal osteodystrophy. Curr Mol Med 5(5):489–496
Karpov PF (1992) Disordered intestinal mechanisms in patients with chronic kidney failure. Ter Arkh 64(6):73–77
Rana SV, Bhardwaj SB (2008) Small intestinal bacterial overgrowth. Scand J Gastroenterol 43(9):1030–1037
Simenhoff ML, Saukkonen JJ, Burke JF, Wesson LG Jr, Schaedler RW, Gordon SJ (1978) Bacterial populations of the small intestine in uremia. Nephron 22(1–3):63–68
Strid H, Simren M, Stotzer PO, Ringstrom G, Abrahamsson H, Bjornsson ES (2003) Patients with chronic renal failure have abnormal small intestinal motility and a high prevalence of small intestinal bacterial overgrowth. Digestion 67(3):129–137
Bures J, Cyrany J, Kohoutova D, Forstl M, Rejchrt S, Kvetina J, Vorisek V, Kopacova M (2010) Small intestinal bacterial overgrowth syndrome. World J Gastroenterol 16(24):2978–2990
Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, Desantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315
Koga N, Nomura G, Yamagata Y, Koga T (1982) Ureteric pain in patients with chronic renal failure on hemodialysis. Diagnostic approach with ultrasonography and computer tomography. Nephron 31:55–58
Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Morgan C, Samuel S, Klarenbach SW, Curhan GC, Tonelli M (2012) Kidney stones and kidney function loss: a cohort study. BMJ 345:e5287
Curhan GC, Willett WC, Speizer FE, Stampfer MJ (2001) Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int 59(6):2290–2298
Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Invest 115(10):2598–2608
Abratt VR, Reid SJ (2010) Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv Appl Microbiol 72:63–87
Stewart CS, Duncan SH, Cave DR (2004) Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiol Lett 230(1):1–7
Sidhu H, Allison MJ, Chow JM, Clark A, Peck AB (2001) Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J Urol 166(4):1487–1491
Kwak C, Jeong BC, Ku JH, Kim HH, Lee JJ, Huh CS, Baek YJ, Lee SE (2006) Prevention of nephrolithiasis by Lactobacillus in stone-forming rats: a preliminary study. Urol Res 34(4):265–270
Murphy C, Murphy S, O’Brien F, O’Donoghue M, Boileau T, Sunvold G, Reinhart G, Kiely B, Shanahan F, O’Mahony L (2009) Metabolic activity of probiotics-oxalate degradation. Vet Microbiol 136(1–2):100–107
Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, Cave DR (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19(6):1197–1203
Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, Pirovano F, Centi C, Ulisse S, Famularo G, De Simone C (2001) Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int 60(3):1097–1105
Troxel SA, Sidhu H, Kaul P, Low RK (2003) Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol 17(3):173–176
Lieske JC, Goldfarb DS, De Simone C, Regnier C (2005) Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int 68(3):1244–1249
Goldfarb DS, Modersitzki F, Asplin JR (2007) A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria. Clin J Am Soc Nephrol 2(4):745–749
Ferraz RR, Marques NC, Froeder L, Menon VB, Siliano PR, Baxmann AC, Heilberg IP (2009) Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients. Urol Res 37(2):95–100
Hoppe B, von Unruh G, Laube N, Hesse A, Sidhu H (2005) Oxalate degrading bacteria: new treatment option for patients with primary and secondary hyperoxaluria? Urol Res 33(5):372–375
Ranganathan N, Patel B, Ranganathan P, Marczely J, Dheer R, Chordia T, Dunn SR, Friedman EA (2005) Probiotic amelioration of azotemia in 5/6th nephrectomized Sprague-Dawley rats. Sci World J 5:652–660
Ranganathan N, Patel BG, Ranganathan P, Marczely J, Dheer R, Pechenyak B, Dunn SR, Verstraete W, Decroos K, Mehta R et al (2006) In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J 52(1):70–79
Simenhoff ML, Dunn SR, Zollner GP, Fitzpatrick ME, Emery SM, Sandine WE, Ayres JW (1996) Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 22(1–3):92–96
Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74(2):349–355
Takayama F, Taki K, Niwa T (2003) Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis 41(3 Suppl 1):S142–S145
Ando Y, Miyata Y, Tanba K, Saito O, Muto S, Kurosu M, Homma S, Kusano E, Asano Y (2003) Effect of oral intake of an enteric capsule preparation containing Bifidobacterium longum on the progression of chronic renal failure. Nihon Jinzo Gakkai shi 45(8):759–764
Meijers BK, De Preter V, Verbeke K, Vanrenterghem Y, Evenepoel P (2010) p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25(1):219–224
Nakabayashi I, Nakamura M, Kawakami K, Ohta T, Kato I, Uchida K, Yoshida M (2011) Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant 26(3):1094–1098
Ranganathan N, Friedman EA, Tam P, Rao V, Ranganathan P, Dheer R (2009) Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Curr Med Res Opin 25(8):1919–1930
Ranganathan N, Ranganathan P, Friedman EA, Joseph A, Delano B, Goldfarb DS, Tam P, Rao AV, Anteyi E, Musso CG (2010) Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv ther 27(9):634–647
Acknowledgments
The authors contributed equally to this work. This review was not supported by grants. The authors thank Professor Decenzio Bonucchi (Nephrology division, Policlinico di Modena, Italy) for his precious advice.
Conflict of interest
The authors certify that they have no conflict of interest with any financial organization regarding the material discussed in this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Di Cerbo, A., Pezzuto, F., Palmieri, L. et al. Clinical and experimental use of probiotic formulations for management of end-stage renal disease: an update. Int Urol Nephrol 45, 1569–1576 (2013). https://doi.org/10.1007/s11255-012-0335-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11255-012-0335-5