Skip to main content

Advertisement

Log in

Antitumor effect of meclofenamic acid on human androgen-independent prostate cancer: a preclinical evaluation

  • Urology – Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Prostate cancer is a worldwide public health problem and its treatment continues to be a therapeutic challenge especially in patients with metastatic androgen-independent cancer. Inflammation is a process that has been involved in the origin of this cancer and its inhibition has been postulated as a prophylactic and therapeutic strategy. The present study evaluated two non-steroidal anti-inflammatory drugs (meclofenamic acid and mefenamic acid) that have been studied very little in regard to cancer treatment.

Methods

In vitro, the cytotoxic effects of meclofenamic acid and mefenamic acid were determined in human prostate cancer cell lines (LNCaP: androgen-dependent; and PC3: androgen-independent). In vivo trials were divided into two phases; meclofenamic acid toxicity was initially determined at different doses (0, 5, 10 and 20 mg/kg/day/25 days) in BALB/c mice, after which a trial using non-toxic doses was carried out to evaluate the antitumor efficacy of the drug in a PC3/nude-mouse model of human androgen-independent prostate cancer.

Results

In vitro trials showed that only meclofenamic acid is highly cytotoxic in neoplastic prostate cells. The 5 and 10 mg/kg/day/25 day doses did not cause relevant toxicity in the BALB/c mouse trial, and so both doses were used in the nude-mouse model of cancer trial. This latter trial showed that meclofenamic acid significantly reduces tumor growth, prolongs survival, and is even capable of generating total tumor regression in up to 25% of mice treated at high dose.

Conclusions

Meclofenamic acid was shown to be a potential antineoplastic agent for both androgen-dependent and androgen-independent prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Shelley MD, Kumar S, Coles B, Wilt T, Staffurth J, Mason MD (2009) Adjuvant hormone therapy for localised and locally advanced prostate carcinoma: a systematic review and meta-analysis of randomised trials. Cancer Treat Rev 35:540–546

    Article  PubMed  CAS  Google Scholar 

  3. Heidenreich A, Aus G, Bolla M, Joniau S, Matveev VB, Schmid HP, Zattoni F, European Association of Urology (2009) EUA guidelines on prostate cancer. Actas Urol Esp 33:113–126

    Article  PubMed  Google Scholar 

  4. Lassi K, Dawson NA (2009) Emerging therapies in castrate-resistant prostate cancer. Curr Opin Oncol 21:260–265

    Article  PubMed  CAS  Google Scholar 

  5. Gomella LG, Johannes J, Trabulsi EJ (2009) Current prostate cancer treatments: effect on quality of life. Urology 73:S28–S35

    Article  PubMed  Google Scholar 

  6. Dobrovolskaia MA, Kozlov SV (2005) Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership. Curr Cancer Drug Targets 5:325–344

    Article  PubMed  CAS  Google Scholar 

  7. Sugar LM (2006) Inflammation and prostate cancer. Can J Urol 13(Suppl 1):46–47

    PubMed  Google Scholar 

  8. Cuzick J, Otto F, Baron JA et al (2009) Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol 10:501–507

    Article  PubMed  CAS  Google Scholar 

  9. Salinas CA, Kwon EM, FitzGerald LM et al (2010) Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk. Am J Epidemiol 172:578–590

    Article  PubMed  Google Scholar 

  10. Mahmud SM, Franco EL, Aprikian AG (2010) Use of nonsteroidal anti-inflammatory drugs and prostate cancer risk: a meta-analysis. Int J Cancer 127:1680–1691

    Article  PubMed  CAS  Google Scholar 

  11. Montejo C, Barcia E, Negro S, Fernández-Carballido A (2010) Effective antiproliferative effect of meloxicam on prostate cancer cells: development of a new controlled release system. Int J Pharm 387:223–229

    Article  PubMed  CAS  Google Scholar 

  12. Rao CV, Reddy BS (2004) Nsaids and chemoprevention. Curr Cancer Drug Targets 4:29–42

    Article  PubMed  CAS  Google Scholar 

  13. Xu Xiao-Chun (2002) COX-2 inhibitors in cancer treatment and prevention, a recent development. Anti-Cancer Drugs 13:127–137

    Article  PubMed  CAS  Google Scholar 

  14. Soh JW, Weinstein IB (2003) Role of COX- independent targets of NSAIDs and related compounds in cancer prevention and treatment. Prog Exp Tumor Res 37:261–285

    Article  PubMed  CAS  Google Scholar 

  15. Soh JW, Kazi JU, Li H, Thompson WJ, Weinstein IB (2008) Celecoxib-induced growth inhibition in SW480 colon cancer cell is associated with activation of protein kinase G. Mol Carcinog 47:519–525

    Article  PubMed  CAS  Google Scholar 

  16. Penning TM, Steckelbroeck S, Bauman DR et al (2006) Aldo-keto reductase (AKR)1C3: role in prostate disease and the development of specific inhibitors. Mol Cell Endocrinol 248:182–191

    Article  PubMed  CAS  Google Scholar 

  17. Skarydová L, Zivná L, Xiong G, Maser E, Wsól V (2009) AKR1C3 as a potential target for the inhibitory effect of dietary flavonoids. Chem Biol Interact 178:138–144

    Article  PubMed  Google Scholar 

  18. Goluboff ET, Shabsigh A, Saidi JA et al (1999) Exisulind (sulindac sulfone) suppresses growth of human prostate cancer in a nude mouse xenograft model by increasing apoptosis. Urology 53:440–445

    Article  PubMed  CAS  Google Scholar 

  19. Kashfi K, Rigas B (2005) Molecular targets of nitric-oxide donating aspirin in cancer. Biochem Soc Trans 33:701–704

    Article  PubMed  CAS  Google Scholar 

  20. Gupta S, Adhami VM, Subbarayan M et al (2004) Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 64:3334–3343

    Article  PubMed  CAS  Google Scholar 

  21. Nakamoto T, Chang CS, Li AK, Chodak GW (1992) Basic fibroblast growth factor in human prostate cancer cells. Cancer Res 52:571–577

    PubMed  CAS  Google Scholar 

  22. Singh G, Ramey DR, Morfeld D, Fries JF (1994) Comparative toxicity of nonsteroidal anti-inflammatory agents. Pharmacol Ther 62:175–191

    Article  PubMed  CAS  Google Scholar 

  23. Delgado-Enciso I, Galván-Salazar HR, Coronel-Tene CG et al (2008) Preclinical evaluation of the therapeutic effect of adenoviral vectors in human papillomavirus-dependent neoplasias. Rev Invest Clin 60:101–106

    PubMed  CAS  Google Scholar 

  24. Koziol JA, Maxwell DA, Fukushima M, Colmerauer ME, Pilch YH (1981) A distribution free test for tumor-growth curve analyses with application to an animal tumor immunotherapy experiment. Biometrics 37:383–390

    Article  PubMed  CAS  Google Scholar 

  25. Koup JR, Tucker E, Thomas DJ, Kinkel AW, Sedman AJ, Dyer R, Sharoky M (1990) A single and multiple dose pharmacokinetic and metabolism study of meclofenamate sodium. Biopharm Drug Dispos 11:1–15

    Article  PubMed  CAS  Google Scholar 

  26. Kovala-Demertzi D, Dokorou V, Primikiri A, Vargas R, Silvestru C, Russo U, Demertzis MA (2009) Organotin meclofenamic complexes: Synthesis, crystal structures and antiproliferative activity of the first complexes of meclofenamic acid—novel anti-tuberculosis agents. J Inorg Biochem 103:738–744

    Article  PubMed  CAS  Google Scholar 

  27. Kalgutkar AS, Rowlinson SW, Crews BC, Marnett LJ (2002) Amide derivatives of meclofenamic acid as selective cyclooxygenase-2 inhibitors. Bioorg Med Chem Lett 12:521–524

    Article  PubMed  CAS  Google Scholar 

  28. Jonas KC, Chandras C, Abayasekara DR, Michael AE (2006) Role for prostaglandins in the regulation of type 1 11beta-hydroxysteroid dehydrogenase in human granulosa-lutein cells. Endocrinology 147:5865–5872

    Article  PubMed  CAS  Google Scholar 

  29. Kalgutkar AS, Crews BC, Rowlinson SW, Marnett AB, Kozak KR, Remmel RP, Marnett LJ (2000) Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proc Natl Acad Sci USA 97:925–930

    Article  PubMed  CAS  Google Scholar 

  30. Ouellet M, Percival MD (1995) Effect of inhibitor time-dependency on selectivity towards cyclooxygenase isoforms. Biochem J 306:247–251

    PubMed  Google Scholar 

  31. Bauman DR, Rudnick SI, Szewczuk LM, Jin Y, Gopishetty S, Penning TM (2005) Development of nonsteroidal anti-inflammatory drug analogs and steroid carboxylates selective for human aldo-keto reductase isoforms: potential antineoplastic agents that work independently of cyclooxygenase isozymes. Mol Pharmacol 67:60–68

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Fondo Ramon Alvarez Buylla de Aldana (Universidad de Colima) and the Fondo Mixto CONACYT-Gobierno de Colima, 2008-C01-83189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Delgado-Enciso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soriano-Hernández, A.D., Galvan-Salazar, H.R., Montes-Galindo, D.A. et al. Antitumor effect of meclofenamic acid on human androgen-independent prostate cancer: a preclinical evaluation. Int Urol Nephrol 44, 471–477 (2012). https://doi.org/10.1007/s11255-011-0012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-011-0012-0

Keywords

Navigation