Skip to main content

Advertisement

Log in

Altered P-selectin and CD44 expression in the renal tissues and peripheral blood of children with IgA nephropathy

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objective

To understand the role of P-selectin (CD62P) and CD44 in mediating immune inflammation in the nephrotic process of children with IgA nephropathy (IgAN), cooperative expression of CD62P and CD44 in peripheral blood and renal tissues of IgAN children was investigated and its association with changes of histopathologic, serologic, and urinary properties was tested.

Material and methods

Forty-six IgAN children were divided into three groups according to pathologic grades and clinical features. Fifteen blood samples from normal children and four normal renal biopsy specimens were used as controls. Plasma level of CD62P was detected by double antibody sandwich immunoradiometric assay; ELISA was used to determine serum level of CD44. Expression of CD62P and CD44 in renal tissues was determined by immunohistochemistry.

Results

Cooperative expression of CD62P and CD44 was detected in renal tissues and peripheral blood of IgAN children. Altered expression of CD62P and CD44 in peripheral blood significantly correlated not only with hematuria, proteinuria, serum cholesterol, and albumin, and with urine NAG and β2-MG, but also with degree of tubulointerstitial injury in IgAN children.

Conclusion

The evidence supported CD62P and CD44 as initial and promoting factors mediating immune inflammation in the nephrotic process in IgAN children. The cooperative expression profiles of CD62P and CD44 in renal tissues and peripheral blood combined with serologic and urinary predictors may be important in diagnosis of progression in children with IgAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Emancipator SN (1994) IgA nephropathy: morphologic expression and pathogenesis. Am J Kidney Dis 23:451–462

    PubMed  CAS  Google Scholar 

  2. Fujinaga S, Ohtomo Y, Umino D, Mochizuki H, Murakami H, Shimizu T, Yamashiro Y, Kaneko K (2007) Plasma exchange combined with immunosuppressive treatment in a child with rapidly progressive IgA nephropathy. Pediatr Nephrol 22:899–902. doi:10.1007/s00467-006-0428-4

    Article  PubMed  Google Scholar 

  3. Beerman I, Novak J, Wyatt RJ, Julian BA, Gharavi AG (2007) The genetics of IgA nephropathy. Nat Clin Pract Nephrol 3:325–338. doi:10.1038/ncpneph0492

    Article  PubMed  CAS  Google Scholar 

  4. Zhang AH, Zhong H, Tang W, Chen SY, He L, Wang S, Su CY, Lu XH, Wang T (2008) Establishing a renal management clinic in China: initiative, challenges, and opportunities. Int Urol Nephrol 40(4):1053–1058. doi:10.1007/s11255-008-9450-8

    Article  PubMed  Google Scholar 

  5. James VD, Joseph PG (2002) IgA nephropathy. N Engl J Med 347:738–748. doi:10.1056/NEJMra020109

    Article  Google Scholar 

  6. Maixnerová D, Merta M, Reiterová J, Štekrov J, Ryšav R, Viklicky O, Obeidová H, Tesař V (2008) The influence of two megsin polymorphisms on the progression of IgA nephropathy. Folia Biol (Praha) 54:40–45

    Google Scholar 

  7. Lai ASH, Lai KN (2005) Molecular basis of IgA nephropathy. Curr Mol Med 5:475–487. doi:10.2174/1566524054553450

    Article  PubMed  CAS  Google Scholar 

  8. Donadio JV Jr, Grande JP (1997) Immunoglobulin a nephropathy: a clinical perspective. J Am Soc Nephrol 8:1324–1332

    PubMed  Google Scholar 

  9. Yoshikawa N, Ito H, Nakamura H (1992) Prognostic indicators in childhood IgA nephropathy. Nephron 60:60–67. doi:10.1159/000133296

    Article  PubMed  CAS  Google Scholar 

  10. Shenoy M, Ognjanovic MV, Coulthard MG (2007) Treating severe Henoch–Schönlein and IgA nephritis with plasmapheresis alone. Pediatr Nephrol 22:1167–1171. doi:10.1007/s00467-007-0498-y

    Article  PubMed  Google Scholar 

  11. Barratt J, Feehally J (2006) Treatment of IgA nephropathy. Kidney Int 69:1934–1938. doi:10.1038/sj.ki.5000419

    Article  PubMed  CAS  Google Scholar 

  12. Libetta C, Rampino T, Palumbo G, Esposito C, Dal Canton A (1997) Circulating serum lectins of patients with IgA nephropathy stimulate IL-6 release from mesangial cells. J Am Soc Nephrol 8:208–213

    PubMed  CAS  Google Scholar 

  13. Taniguchi Y, Yorioka N, Oda H, Yamakido M (1996) Platelet-derived growth factor, interleukin (IL)-1 beta, IL-6R and tumor necrosis factor-alpha in IgA nephropathy: an immunohistochemical study. Nephron 74:652–660

    Article  PubMed  CAS  Google Scholar 

  14. Wagrowska-Danilewicz M, Danilewicz M (2004) Expression of alpha5beta1 and alpha6beta1 integrins in IgA nephropathy (IgAN) with mild and severe proteinuria. an immunohistochemical study. Int Urol Nephrol 36(1):81–87. doi:10.1023/B:UROL.0000032707.22306.d1

    Article  PubMed  CAS  Google Scholar 

  15. Maixnerova D, Merta M, Reiterova J, Štekrova J, Ryšava R, Obeidova H, Viklicky O, Potměšil P, Tesař V (2007) The influence of three endothelin-1 polymorphisms on the progression of IgA nephropathy. Folia Biol (Praha) 53:27–32

    CAS  Google Scholar 

  16. Adler S, Brady HR (1999) Cell adhesion molecules and the glomerulopathies. Am J Med 107:371–386. doi:10.1016/S0002-9343(99)00233-8

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa D, Shikata K, Matsuda M, Okada S, Wada J, Yamaguchi S, Suzuki Y, Miyasaka M, Tojo S, Makino H (2002) Preventive effect of sulphated colominic acid on P-selectin-dependent infiltration of macrophages in experimentally induced crescentic glomerulonephritis. Clin Exp Immunol 129:43–53. doi:10.1046/j.1365-2249.2002.01875.x

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe Y, Inoue T, Okada H, Kotaki S, Kanno Y, Kikuta T, Suzuki H (2006) Impact of selectin gene polymorphisms on rapid progression to end-stage renal disease in patients with IgA nephropathy. Intern Med 45:947–951. doi:10.2169/internalmedicine.45.1641

    Article  PubMed  Google Scholar 

  19. Itoh S, Susuki C, Takeshita K, Nagata K, Tsuji T (2007) Redistribution of P-selectin glycoprotein ligand-1 (PSGL-1) in chemokine-treated neutrophils: a role of lipid microdomains. J Leukoc Biol 81:1–8. doi:10.1189/jlb.0606398

    Article  Google Scholar 

  20. Tang J, Ley KF, Hunt CA (2007) Dynamics of in silico leukocyte rolling, activation, and adhesion. BMC Syst Biol 1:14–38. doi:10.1186/1752-0509-1-14

    Article  PubMed  Google Scholar 

  21. Gironella M, Mollà M, Salas A, Soriano A, Sans M, Closa D, Engel P, Salas A, Piqué JM, Panés J (2002) The role of P-selectin in experimental colitis as determined by antibody immunoblockade and genetically deficient mice. J Leukoc Biol 72:56–64

    PubMed  CAS  Google Scholar 

  22. Zhou T, Li X, Hao CL, Fu XL, Yao J, Chen N, Dong DC (1999) Significance of P-selectin expression in IgA nephropathy. Chin J Immunol 15:328–330

    CAS  Google Scholar 

  23. Gunthert U (1993) CD44: a multitude of isoforms with diverse functions. Curr Top Microbiol Immunol 184:47–63

    PubMed  CAS  Google Scholar 

  24. Lesley J, Hyman R, Kincade PW (1993) CD44 and its interaction with extracellular matrix. Adv Immunol 54:271–335. doi:10.1016/S0065-2776(08)60537-4

    Article  PubMed  CAS  Google Scholar 

  25. Wüthrich RP (1999) The proinflammatory role of hyaluronan-CD44 interactions in renal injury. Nephrol Dial Transplant 14:2554–2556. doi:10.1093/ndt/14.11.2554

    Article  PubMed  Google Scholar 

  26. Siegelman MH, DeGrendele HC, Estess P (1999) Activation and interaction of CD44 and hyaluronan in immunological systems. J Leukoc Biol 66:315–321

    PubMed  CAS  Google Scholar 

  27. Roy-Chaudhury P, Khong TF, Williams JH, Haites NE, Wu B, Simpson JG, Power DA (1996) CD44 in glomerulonephritis: Expression in human renal biopsies, the Thy 1.1 model, and by cultured mesangial cells. Kidney Int 50:272–281. doi:10.1038/ki.1996.312

    Article  PubMed  CAS  Google Scholar 

  28. Florquin S, Nunziata R, Claessen N, van den Berg FM, Pals ST, Weening JJ (2002) CD44 expression in IgA nephropathy. Am J Kidney Dis 39:407–414. doi:10.1053/ajkd.2002.30563

    Article  PubMed  CAS  Google Scholar 

  29. Yang JY, Cheng SM, Yao Y, Ding J (2001) Clinical classification, diagnosis and treatment of glomerular diseases in children. Chin J Pediatr 39:746–747

    Google Scholar 

  30. Wang HY (ed) (1996) Nephrology. People’s Medical Publishing House, Beijing

    Google Scholar 

  31. Oda T, Kimura M, Hishida A, Yamashita A, Suzuki Y, Miyasaka M (1998) Cell-to-cell interaction is required to induce proteinuria in situ immune complexes glomerulonephritis. J Lab Clin Med 132:112–116. doi:10.1016/S0022-2143(98)90006-3

    Article  PubMed  CAS  Google Scholar 

  32. Bourguignon LY, Gilad E, Peyrollier K, Brightman A, Swanson RA (2007) Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes. J Neurochem 101(4):1002–1017. doi:10.1111/j.1471-4159.2007.04485.x

    Article  PubMed  CAS  Google Scholar 

  33. Wang SJ, Peyrollier K, Bourguignon LY (2007) The influence of hyaluronan-CD44 interaction on topoisomerase II activity and etoposide cytotoxicity in head and neck cancer. Arch Otolaryngol Head Neck Surg 133(3):281–288. doi:10.1001/archotol.133.3.281

    Article  PubMed  Google Scholar 

  34. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45. doi:10.1038/nrm1004

    Article  PubMed  CAS  Google Scholar 

  35. Desai B, Rogers MJ, Chellaiah MA (2007) Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Molecular Cancer 6:18–34

    Article  PubMed  Google Scholar 

  36. Wuthrich RP (1999) The proinflammatory role of hyaluronan-CD44 interactions in renal injury. Nephrol Dial Transplant 14:2554–2556. doi:10.1093/ndt/14.11.2554

    Article  PubMed  CAS  Google Scholar 

  37. Wagrowska-Danilewicz M, Danilewicz M (2002) A correlation between immunoexpression of CD44, alpha-SMA and CD68+ cells in IgA-nephropathy and in mesangial proliferative IgA-negative glomerulonephritis. Pol J Pathol 53:155–162

    PubMed  CAS  Google Scholar 

  38. Radford MG Jr, Donadio JV Jr, Bergstralh EJ, Grande JP (1997) Predicting renal outcome in IgA nephropathy. J Am Soc Nephrol 8:199–207

    PubMed  Google Scholar 

  39. Coppo R, D’Amico G (2005) Factors predicting progression of IgA nephropathies. J Nephrol 18:503–512

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. Dai K for English proofreading. We are grateful to Dr. Liu XQ for valuable discussion and to Ms. He JH for her gentle and prompt cooperation regarding immuno-histochemical detection. This research was partly supported by funds from Guang Dong Provincial Science and Technology Project of China (Grant No. 2008B030301070), Guang Dong Provicial Medical Science Program of China (Grant No. B2008027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Xiaoyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiaoling, Z., Xiaoyun, J., Wei, W. et al. Altered P-selectin and CD44 expression in the renal tissues and peripheral blood of children with IgA nephropathy. Int Urol Nephrol 41, 703–711 (2009). https://doi.org/10.1007/s11255-008-9512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-008-9512-y

Keywords

Navigation