Skip to main content
Log in

On the Deformations of Symplectic Structure Related to the Monge–Ampère Equation on the Kähler Manifold P2(ℂ)

  • Published:
Ukrainian Mathematical Journal Aims and scope

We analyze the cohomology structure of the fundamental two-form deformation related to a modified Monge–Ampère type on the complex Kähler manifold P2(ℂ). On the basis of the Levi-Civita connection and the related vector-field deformation of the fundamental two-form, we construct a hierarchy of bilinear symmetric forms on the tangent bundle of the Kähler manifold P2(ℂ) generating Hermitian metrics on it and the corresponding solutions to the Monge–Ampère-type equation. The classical fundamental two-form construction on the complex Kähler manifold P2(ℂ) is generalized and the related metric deformations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, “Mathematical methods of classical mechanics,” Grad. Texts Math., Vol. 60, Springer-Verlag, New York, Berlin (1978).

  2. V. I. Arnold, “Singularities of smooth transformations,” Uspekhi Mat. Nauk, 23, No. 1, 1–44 (1968).

    MathSciNet  Google Scholar 

  3. S. S. Chern, Complex Manifolds, Univ. Chicago Publ. (1956).

    MATH  Google Scholar 

  4. S. K. Donaldson, Two-Forms on Four-Manifolds and Elliptic Equation; sarXiv:math/0607083v1 [math.DG] 4 Jul 2006 (2018).

  5. Ph. Delanoë, “Sur l’analogue presque-complexe de l’équation de Calabi–Yau,” Osaka J. Math., 33, 829–846 (1996).

    MathSciNet  MATH  Google Scholar 

  6. C. Ehresmann and P. Libermann, “Sur le probl`eme d’équivalence des formes différentielles exterieures quadratiques,” C. R. Acad. Sci. Paris, 229, 697–698 (1949).

    MathSciNet  MATH  Google Scholar 

  7. A. Enneper, Nachr. Königl. Gesell. Wissensch., Georg-Augustus Univ. Göttingen, 12, 258–277 (1868).

  8. A. M. Grundland and W. J. Zakrzewski, “On certain geometric aspects of CPN harmonic maps,” J. Math. Phys., 44, No. 2, 813–822 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Joyce, Compact Manifolds with Special Holonomy, Oxford Univ. Press (2000).

    MATH  Google Scholar 

  10. S. Kolodziej, “The complex Monge–Ampère equation,” Acta Math., 180, 69–117 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. G. Konopelchenko and I. A. Taimanov, “Constant mean curvature surfaces via an integrable dynamical system,” J. Phys. A, 29, 1261–1265 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Libermann, “Sur les structures presque complexes et autres structures infinitésimales régulières,” Bull. Soc. Math. France, 83, 195–224 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Lichnerowicz, Théorie Globale des Connexions et des Groupes d’Holonomie, Edizioni Cremonese, Roma (1955).

  14. J. D. Moore, Lectures on Seiberg–Witten Invariants, Springer, New York (2001).

    MATH  Google Scholar 

  15. J. Moser, “On the volume elements on a manifold,” Trans. Amer. Math. Soc., 120, 286–294 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Nijenhuis andW. B.Woolf, “Some integration problems in almost-complex and complex manifolds,” Ann. Math. (2), 77, 424–489 (1963).

  17. W. Nongue and Z. Peng, On a Generalized Calabi–Yau Equation; arxiv:0911.0784.

  18. N. Levinson, “A polynomial canonical form for certain analytic functions of two variables at a critical point,” Bull. Amer. Math. Soc., 66, 366–368 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu. Moser, “Curves invariant under those transformations of a ring which preserve area,” Matematika, 6, No. 5, 51–67 (1962).

    Google Scholar 

  20. A. M. Samoilenko, “The equivalence of a smooth function to a Taylor polynomial in the neighborhood of a finite-type critical point,” Funct. Anal. Appl., 2, 318–323 (1968); https://doi.org/https://doi.org/10.1007/BF01075684.

    Article  Google Scholar 

  21. A. M. Samoilenko, “Some results on the local theory of smooth functions,” Ukr. Math. Zh., 59, No. 2, 231–267 (2007); English translation: Ukr. Math. J., 59, No. 2, 243–292 (2007)

  22. A. M. Samoilenko, Elements of the Mathematical Theory of Multi-Frequency Oscillations, Math. Appl., Vol. 71, Kluwer, Dordrecht, Netherlands (1991).

  23. J. C. Tougeron, Theses, Univ. Rennes, May (1967).

  24. Tseng Li-Sheng and S.-T. Yau, Cohomology and Hodge Theory on Symplectic Manifolds, I, II, III (2009); arXiv:0909.5418.

  25. K. Weierstrass, “Fortsetzung der Untersuchung über die Minimalflachen,” Math. Werke, vol. 3, 219–248 (1866).

    Google Scholar 

  26. A. Weil, Introduction à l’Etude des Variétés Kählériennes, Hermann, Paris (1958) (Publ. Inst. Math. Univ. Nancago, VI).

    Google Scholar 

  27. R. O. Wells, Differential Analysis on Complex Manifolds, Prentice Hall, New Jersey (1973).

    MATH  Google Scholar 

  28. S.-T. Yau, “On the Ricci curvature of compact Kähler manifold and the complex Monge–Ampère equation. I,” Comm. Pure Appl. Math., 31, 339–411 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  29. W. J. Zakrzewski, “Surfaces in ℝN21 based on harmonic maps 𝕊2 → CPN−1,” J. Math. Phys., 48, No. 11, 113520(8) (2007).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 1, pp. 28–37, January, 2023. Ukrainian DOI: 10.37863/umzh.v75i1.7320.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balinsky, A.A., Prykarpatski, A.K., Pukach, P.Y. et al. On the Deformations of Symplectic Structure Related to the Monge–Ampère Equation on the Kähler Manifold P2(ℂ). Ukr Math J 75, 29–39 (2023). https://doi.org/10.1007/s11253-023-02183-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02183-w

Navigation