Skip to main content
Log in

An Ambarzumian-Type Theorem on Graphs with Odd Cycles

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider an inverse problem for Schrödinger operators on a connected equilateral graph G with standard matching conditions. The graph G consists of at least two odd cycles glued together at a common vertex. We prove an Ambarzumian-type result, i.e., if a specific part of the spectrum is the same as in the case of zero potential, then the potential must be equal to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Akkermans, A. Comtet, J. Desbois, G. Montambaux, and Ch. Texier, “Spectral determinant on quantum graphs,” Ann. Phys., 284, No. 1, 10–51 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Ambarzumian, “Ü ber eine Frage der Eigenwerttheorie,” Z. Phys., 53, 690–695 (1929).

    Article  MATH  Google Scholar 

  3. G. Berkolaiko and P. Kuchment, “Introduction to quantum graphs,” Math. Surveys Monogr., Amer. Math. Soc. (2013).

  4. B. Bollobás, Modern Graph Theory, Springer, New York (1998).

    Book  MATH  Google Scholar 

  5. J. Bolte, S. Egger, and R. Rueckriemen, “Heat-kernel and resolvent asymptotics for Schrödinger operators on metric graphs,” Appl. Math. Res. Express, 2015, No. 1, 129–165 (2014).

    MATH  Google Scholar 

  6. J. Boman, P. Kurasov, and R. Suhr, “Schrödinger operators on graphs and geometry II. Spectral estimates for L1-potentials and an Ambartsumian theorem,” Integr. Equat. Operat. Theory, 90, No. 3 (2018).

  7. G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe,” Acta Math., 78, 1–96 (1946).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Carlson and V. Pivovarchik, “Ambarzumian’s theorem for trees,” Electron. J. Different. Equat., 2007, No. 142, 1–9 (2007).

    MathSciNet  MATH  Google Scholar 

  9. R. Carlson and V. Pivovarchik, “Spectral asymptotics for quantum graphs with equal edge lengths,” J. Phys. A, 41, No. 14, Article 145202 (2008).

  10. Y. H. Cheng, Tui-En Wang, and Chun-Jen Wu, “A note on eigenvalue asymptotics for Hill’s equation,” Appl. Math. Lett., 23, No. 9, 1013–1015 (2010).

    Article  MathSciNet  Google Scholar 

  11. S. Currie and B. A.Watson, “Eigenvalue asymptotics for differential operators on graphs,” J. Comput. Appl. Math., 182, No. 1, 13–31 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. B. Davies, “An inverse spectral theorem,” J. Operator Theory, 69, No. 1, 195–208 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. C. De Verdière, “Semi-classical measures on quantum graphs and the Gauss map of the determinant manifold,” Ann. Henri Poincar´e, 16, 347–364 (2015).

  14. J. Desbois, “Spectral determinant of Schr¨odinger operators on graphs,” J. Phys. A, 33, No. 7 (2000).

  15. L. Friedlander, “Determinant of the Schrödinger operator on a metric graph,” Contemp. Math., 415, 151–160 (2006).

    Article  MATH  Google Scholar 

  16. J. M. Harrison, K. Kirsten, and C. Texier, “Spectral determinants and zeta functions of Schr¨odinger operators on metric graphs,” J. Phys. A, 45, No. 12, Article 125206 (2012).

  17. M. Horváth, “Inverse spectral problems and closed exponential systems,” Ann. Math. (2), 162, No. 2, 885–918 (2005).

  18. M. Horváth, “On the stability in Ambarzumian theorems,” Inverse Probl., 31, No. 2, Article 025008 (2015).

  19. I. Kac and V. Pivovarchik, “On multiplicity of a quantum graph spectrum,” J. Phys. A, 44, No. 10, Article 105301 (2011).

  20. M. Kiss, “Spectral determinants and an Ambarzumian type theorem on graphs,” Integral Equations Operator Theory, 92, 1–11 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Kuchment, “Quantum graphs: an introduction and a brief survey,” in: Analysis on Graphs and Its Applications, Amer. Math. Soc., Providence, RI (2008), pp. 291–314.

  22. Chun-Kong Law and Eiji Yanagida, “A solution to an Ambarzumyan problem on trees,” Kodai Math. J., 35, No. 2, 358–373 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Möller and V. Pivovarchik, “Spectral theory of operator pencils, Hermite–Biehler functions, and their applications,” Oper. Theory Adv. Appl., Birkhäuser/Springer, Cham (2015).

  24. K. Pankrashkin, “Spectra of Schrödinger operators on equilateral quantum graphs,” Lett. Math. Phys., 77, No. 2, 139–154 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. N. Pivovarchik, “Ambarzumian’s theorem for a Sturm–Liouville boundary value problem on a star-shaped graph,” Funct. Anal. Appl., 39, No. 2, 148–151 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu. V. Pokornyi and A. V. Borovskikh, “Differential equations on networks (geometric graphs),” J. Math. Sci. (N.Y.), 119, No. 6, 691–718 (2004).

  27. Ch. Texier, “ζ-Regularized spectral determinants on metric graphs,” J. Phys. A, 43, No. 42, Article 425203 (2010).

  28. Chuan-Fu Yang and Xiao-Chuan Xu, “Ambarzumyan-type theorems on graphs with loops and double edges,” J. Math. Anal. Appl., 444, No. 2, 1348–1358 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kiss.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 12, pp. 1679–1685, December, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i12.6734.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, M. An Ambarzumian-Type Theorem on Graphs with Odd Cycles. Ukr Math J 74, 1916–1923 (2023). https://doi.org/10.1007/s11253-023-02178-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02178-7

Navigation