Skip to main content
Log in

Bernstein Inequality for Multivariate Functions with Smooth Fourier Images

  • Published:
Ukrainian Mathematical Journal Aims and scope

Let K be a compact set in ℝn with (O)-property and let 1 ≤ p ≤ ∞. Then there exists a constant CK < ∞ independent of f and α and such that

$$\begin{array}{cc}{\Vert {D}^{\alpha }f\Vert }_{p}\le {C}_{K}\underset{\xi \in K}{\mathrm{sup}}\left|{\xi }^{\alpha }\right|{\Vert f\Vert }_{{\mathcal{H}}_{p,K,3}}& \begin{array}{cc}\mathrm{for all}& \begin{array}{cc}\alpha \in {\mathbb{Z}}_{+}^{n}& \begin{array}{cc}\mathrm{and}& f\in {\mathcal{H}}_{p,K,3}\end{array}\end{array},\end{array}\end{array}$$

where \({\mathcal{H}}_{p,K,3}=\left\{f\in {L}^{p}\left({\mathbb{R}}^{n}\right):\mathrm{supp }\widehat{f}\subset K, {D}^{\left(\mathrm{3,3},\dots ,3\right)}\widehat{f}\in C\left({\mathbb{R}}^{n}\right)\right\}\), \({\Vert f\Vert }_{{\mathcal{H}}_{p,K,3}}={\Vert {D}^{\left(\mathrm{3,3},\dots ,3\right)}\widehat{f}\Vert }_{\infty },\) and \(\widehat{f}\) is the Fourier transform of f. Note that K is said to have the (O)-property if there exists a constant C > 0 such that

$$\begin{array}{cc}\underset{\mathrm{x}\in K}{\mathrm{sup}}\left|{\mathrm{x}}^{\alpha +{e}_{j}}\right|\ge C\underset{\mathrm{x}\in K}{\mathrm{sup}}\left|{\mathrm{x}}^{\alpha }\right|& \begin{array}{cc}\mathrm{for all}& \begin{array}{cc}\alpha \in {\mathbb{Z}}_{+}^{n}& \begin{array}{cc}\mathrm{and}& j=\mathrm{1,2},\dots ,n.\end{array}\end{array}\end{array}\end{array}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Bang and M. Morimoto, “On the Bernstein–Nikolsky inequality,” Tokyo J. Math., 14, 231–238 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. H Bang, “A property of infinitely differentiable functions,” Proc. Amer. Math. Soc., 108, 73–76 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  3. H. H. Bang, “Functions with bounded spectrum,” Trans. Amer. Math. Soc., 347, 1067–1080 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. H. H. Bang, “The study of the properties of functions belonging to an Orlicz space depending on the geometry of their spectra,” Izv. Akad. Nauk, Ser. Mat., 61, 163–198 (1997).

  5. H. H. Bang and V. N. Huy, “Behavior of the sequence of norms of primitives of a function,” J. Approx. Theory, 162, 1178–1186 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. N. Bernstein, Collected Works, Vol. II, Izd. Akad. Nauk SSSR, Moscow (1954).

    Google Scholar 

  7. K. Dzhaparidze and J. H. Zanten, “On Bernstein-type inequalities for martingales,” Stochast. Proc. Appl., 93, 109–117 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Frappier and Q. I. Rahman, “On an inequality of S. Bernstein,” Canad. J. Math., 34, 932–944 (1982).

    Article  MATH  Google Scholar 

  9. A. Mate and P. Nevai, “Bernstein’s inequality in Lp for 0 < p < 1 and (C, 1) bounds for orthogonal polynomials,” Ann. Math. (2), 2, 145–154 (1980).

    Article  MATH  Google Scholar 

  10. S. M. Nikolskii, Approximation of Functions of Several Variables and Imbedding Theorems, Nauka, Moscow (1977).

    Google Scholar 

  11. I. Pesenson, “Bernstein–Nikolskii inequalities and Riesz interpolation formula on compact homogeneous manifolds,” J. Approx. Theory, 150, No. 2, 175–198 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Pesenson, “Bernstein–Nikolskii and Plancherel–Polya inequalities in Lp-norms on noncompact symmetric spaces,” Math. Nachr., 282, No. 2, 253–269 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. Q. I. Rahman and Q. M. Tariq, “On Bernstein’s inequality for entire functions of exponential type,” J. Math. Anal. Appl., 359, 168–180 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. Q. I. Rahman and G. Schmeisser, “Lp inequalities for entire functions of exponential type,” Trans. Amer. Math. Soc., 320, 91–103 (1990).

    MathSciNet  MATH  Google Scholar 

  15. Q. I. Rahman and Q. M. Tariq, “On Bernstein’s inequality for entire functions of exponential type,” Comput. Methods Funct. Theory, 7, 167–184 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. S. Vladimirov, Methods of the Theory of Generalized Functions, Taylor & Francis, London, New York (2002).

    Book  MATH  Google Scholar 

  17. V. V. Yurinskii, “Exponential inequalities for sums of random vectors,” J. Multivariate Anal., 6, 473–499 (1976).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Huy Bang.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 11, pp. 1558–1570, November, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i11.6386.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, H.H., Huy, V.N. Bernstein Inequality for Multivariate Functions with Smooth Fourier Images. Ukr Math J 74, 1780–1794 (2023). https://doi.org/10.1007/s11253-023-02170-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02170-1

Navigation