Skip to main content
Log in

Reducibility of Self-Adjoint Linear Relations and Application to Generalized Nevanlinna Functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We present necessary and sufficient conditions for the reducibility of a self-adjoint linear relation in a Krein space. Then a generalized Nevanlinna function Q represented by a self-adjoint linear relation A in a Pontryagin space can be decomposed by means of the reducing subspaces of A. The sum of two functions \( {Q}_i\in {N}_{\kappa_i}\left(\mathcal{H}\right) \), i = 1, 2, minimally represented by the triplets \( \left({\mathcal{K}}_i,{A}_i,{\Gamma}_i\right) \) is also studied. For this purpose, we create a model \( \left(\overset{\sim }{\mathcal{K}},\overset{\sim }{A},\overset{\sim }{\Gamma}\right) \) to represent Q := Q1 + Q2 in terms of \( \left({\mathcal{K}}_i,{A}_i,{\Gamma}_i\right) \). By using this model, necessary and sufficient conditions for κ = κ1+ κ2 are proved in the analytic form. Finally, we explain how degenerate Jordan chains of the representing relation A affect the reducing subspaces of A and the decomposition of the corresponding function Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Arens, “Operational calculus of linear relations,” Pacific J. Math., 11, 9–23 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  2. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, New York (1993).

  3. D. Alpay, A. Dijksma, J. Rovnyak, and H. de Snoo, “Schur functions, operator colligations, and reproducing kernel Pontryagin spaces,” Operator Theory: Advances and Applications, 96, Birkhäuser Verlag, Basel (1997).

  4. J. Behrndt, H. de Snoo, and S. Hassi, “Boundary value problems, Weyl functions, and differential operators,” Monogr. Math., 108 (2020); https://doi.org/10.1007/978-3-030-36714-5.

  5. J. Bognar, Indefinite Inner Product Spaces, Springer-Verlag, New York-Heidelberg (1974).

    Book  MATH  Google Scholar 

  6. M. Borogovac, “Inverse of generalized Nevanlinna function that is holomorphic at infinity,” North-West. Europ. J. Math., 6, 19–43 (2020).

    MathSciNet  MATH  Google Scholar 

  7. M. Borogovac and H. Langer, “A characterization of generalized zeros of negative type of matrix functions of the class \( {N}_{\kappa}^{nxn} \),Oper. Theory Adv. Appl., 28, 17–26 (1988).

  8. K. Daho and H. Langer, “Matrix functions of the class \( {N}_{\kappa}^{nxn} \),Math. Nachr., 120, 275–294 (1985).

  9. A. Dijksma, H. Langer, and H. S. V. de Snoo, “Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions,” Math. Nachr., 161, 107–154 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Hassi, H. S. V. de Snoo, and H. Woracek, “Some interpolation problems of Nevanlinna–Pick type,” Oper. Theory Adv. Appl., 106, 201–216 (1998).

    MATH  Google Scholar 

  11. I. S. Iohvidov, M. G. Krein, and H. Langer, Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric, Akademie-Verlag, Berlin (1982).

    MATH  Google Scholar 

  12. M. G. Kreĭn and H. Langer, “Über die Q-Funktion eines π-hermiteschen Operators im Raume Πκ,Acta Sci. Math. (Szeged), 34, 191–230 (1973).

    MathSciNet  MATH  Google Scholar 

  13. M. G. Kreĭn and H. Langer, “Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Πκ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen,” Math. Nachr., 77, 187–236 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Langer and B. Textorius, “On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space,” Pacific J. Math., 72, No. 1, 135–165 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Luger, “Generalized Nevanlinna functions: operator representations, asymptotic behavior,” Operator Theory (2014), p. 345–371; https://doi.org/10.1007/978-3-0348-0667-1-35.

  16. A. Luger, “A characterization of generalized poles of generalized Nevanlinna functions,” Math. Nachr., 279, 891–910 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. de Snoo and H.Woracek, “The Krein formula in almost Pontryagin spaces. A proof via orthogonal coupling,” Indag. Math. (N.S.), 29, No. 2, 714–729 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Sorjonen, “On linear relations in an indefinite inner product space,” Ann. Acad. Sci. Fenn. Ser. A I Math., 4, No. 1, 169–192 (1979).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Borogovac.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 7, pp. 893–920, July, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i7.6084.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borogovac, M. Reducibility of Self-Adjoint Linear Relations and Application to Generalized Nevanlinna Functions. Ukr Math J 74, 1021–1052 (2022). https://doi.org/10.1007/s11253-022-02118-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02118-x

Navigation