Skip to main content
Log in

Probabilistic Weak Solutions for Nonlinear Stochastic Evolution Problems Involving Pseudomonotone Operators

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study an important class of stochastic nonlinear evolution problems with pseudomonotone elliptic parts and establish the existence of probabilistic weak (or martingale) solutions. No solvability theory has been developed so far for these equations despite numerous works involving various generalizations of the monotonicity condition. Key to our work is a sign result for the Itô differential of an approximate solution that we establish, as well as several compactness results of the analytic and probabilistic nature, and a characterization of pseudomonotone operators due to F. E. Browder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bensoussan, “Some existence results for stochastic partial differential equations,” in: Stochastic Partial Differential Equations and Applications (Trento, 1990), 268, 37–53 (1992).

  2. A. Bensoussan, “Stochastic Navier–Stokes equations,” Acta Appl. Math., 38, No. 3, 267–304 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bensoussan and R. Temam, “Equations stochastiques du type Navier–Stokes,” J. Funct. Anal., 13, No. 1, 195–222 (1973).

    Article  MATH  Google Scholar 

  4. A. Bensoussan and R. Temam, “Equations aux derivees partielles stochastiques non lineaires,” Israel J. Math., 11, No. 1, 95–129 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Brézis, “Équations et inéquations non linéaires dans les espaces vectoriels en dualité,” Ann. Inst. Fourier (Grenoble), 18, 115–175 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Brézis and F. E. Browder, “Strongly nonlinear elliptic boundary value problems,” Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), 5, No. 3, 587–603 (1978).

  7. H. Brézis and F. E. Browder, “Strongly nonlinear parabolic initial-boundary value problems,” Proc. Natl. Acad. Sci. USA, 76, No. 1, 38–40 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Brézis and F. Browder, “Some properties of higher order Sobolev spaces,” J. Math. Pures Appl. (9), 61, No. 3, 245–259 (1982).

  9. F. E. Browder, “Nonlinear operators and nonlinear equations of evolution in Banach spaces,” Proc. Sympos. Pure Math., 18, Pt 2 (1976).

  10. F. E. Browder, “Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains,” Proc. Natl. Acad. Sci. USA, 74, No. 7, 2659–2661 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  11. F. E. Browder, “Strongly nonlinear parabolic equations of higher order,” Convegno Celebrativo del Centenario Della Nascita di Mauro Picone e di Leonida Tonell, Accad. Naz. Lincei (1986).

  12. F. E. Browder, “Strongly nonlinear parabolic boundary value problems,” Amer. J. Math., 86, No. 2, 339–357 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  13. F. E. Browder and H. Brezis, “Strongly nonlinear parabolic variational inequalities,” Proc. Natl. Acad. Sci. USA, 77, No. 2, 713–715 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  14. Z. Brzeźniak, W. Liu, and J. Zhu, “Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise,” Nonlinear Anal. Real World Appl., 17, 283–310 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press (1992).

    Book  MATH  Google Scholar 

  16. Yu. A. Dubinskii, “Itogi nauki i tekhniki,” Sovrem. Probl. Mat., 9, 5–130 (1976).

    Google Scholar 

  17. Yu. A. Dubinskii, “Itogi nauki i tekhniki,” Sovrem. Probl. Mat., 37, 89–166 (1990).

    Google Scholar 

  18. I. Gyöngy and A. Millet, “On discretization schemes for stochastic evolution equations,” Potential Anal., 23, No. 2, 99–134 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Gyöngy and N. V. Krylov, “On stochastic equations with respect to semimartingales. I,” Stochastics, 4, No. 1, 1–21 (1980/1981).

  20. N. V. Krylov and B. L. Rozovskii, “Stochastic evolution equations,” J. Sov. Math., 14, 1233–1277 (1981).

    Article  MATH  Google Scholar 

  21. R. Landes, “A Note on strongly nonlinear parabolic equations of higher order,” Different. Integr. Equat., 3, No. 5, 851–862 (1990).

    MathSciNet  MATH  Google Scholar 

  22. W. Liu and M. Röckner, “Local and global well-posedness of SPDE with generalized coercivity conditions,” J. Different. Equat., 254, No. 2, 725–755 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Liu, “Existence and uniqueness of solutions to nonlinear evolution equations with locally monotone operators,” Nonlin. Anal., 74, No. 18, 7543–7561 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Liu and M. Röckner, “SPDE in Hilbert space with locally monotone coefficients,” J. Funct. Anal., 259, No. 11, 2902–2922 (2010).

  25. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris; Gauthier-Villars, Paris (1969).

  26. G. I. Minty, “On a “monotonicity” method for the solution of non-linear equations in Banach spaces,” Proc. Natl. Acad. Sci. USA, 50, No. 6, 1038–1041 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Pardoux, “Équations aux dérivées partielles stochastiques non linéaires monotones,” Etude de Solutions Fortes de Type Itô, Thése Doct. Sci. Math., Univ. Paris Sud (1975).

  28. C. Prévôt and M. Röckner, “A concise course on stochastic partial differential equations,” Lect. Notes Math., 1905 (2007).

  29. Y. Prokhorov, “Convergence of random processes and limit theorems in probability theory,” Theory Probab. Appl., 1, No. 157–214 (1956).

  30. T. Roubícek, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, etc. (2005).

  31. B. L. Rozovsky and S. V. Lototsky, “Stochastic evolution systems. Linear theory and applications to non-linear filtering,” Second ed., Probability Theory and Stochastic Modelling, 89, Springer, Cham (2018).

  32. M. Sango, “Density dependent stochastic Navier–Stokes equations with non-Lipschitz random forcing,” Rev. Math. Phys., 22, No. 6, 669–697 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Sango, “Magnetohydrodynamic turbulent flows: existence results,” Phys. D, 239, No. 12, 912–923 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Simon, “Compact sets in the space Lp(0,T;B),” Ann. Mat. Pura Appl. (4), 146, No. 1, 65–96 (1986).

  35. A. V. Skorokhod, “Limit theorems for stochastic processes,” Theory Probab. Appl., 1, No. 3, 261–290 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  36. I. V. Skrypnik, “Higher-order nonlinear elliptic equations,” J. Sov. Math., 56, No. 4, 2505–2557 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  37. I. V. Skrypnik, “Methods for analysis of nonlinear elliptic boundary value problems,” Transl. Math. Monogr., 139, Amer. Math. Soc., Providence, RI (1994).

  38. R. Temam, “Navier–Stokes equations. Theory and numerical analysis,” Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam-New York (1977).

  39. M. Viot, Solutions Faibles D’équations aux Dérivées Partielles Stochastiques Non Linéaires, Thèse, Univ. Pierre et Marie Curie, Paris (1976).

  40. M. I. Višik, “Solvability of boundary-value problems for quasilinear parabolic equations of higher orders,” Mat. Sb., 59 (101), 289–325 (1962); English translation: Amer. Math. Soc. Transl. Ser. 2, 65, Amer. Math. Soc., Providence, R.I. (1967).

  41. J. R. L. Webb, “Boundary value problems for strongly nonlinear elliptic equations,” J. London Math. Soc. (2), 21, No. 1, 123–132 (1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sango.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 7, pp. 871–892, July, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i7.2286.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z.I., Sango, M. Probabilistic Weak Solutions for Nonlinear Stochastic Evolution Problems Involving Pseudomonotone Operators. Ukr Math J 74, 997–1020 (2022). https://doi.org/10.1007/s11253-022-02117-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02117-y

Navigation