Skip to main content
Log in

Approximation by Fourier Sums in the Classes of Weyl–Nagy Differentiable Functions with High Exponent of Smoothness

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish asymptotic estimates for the least upper bounds of approximations in the uniform metric by Fourier sums of order n − 1 in the classes of 2𝜋-periodic Weyl–Nagy differentiable functions \( {W}_{\beta, p}^r \), 1 ≤ p ≤ ∞, β ∈ ℝ, with high exponents of smoothness \( r\left(r-1\ge \sqrt{n}\right) \). We also establish similar estimates for the function classes \( {W}_{\beta, 1}^r \)in metrics of the spaces Lp, 1 ≤ p ≤ ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Stepanets, Classification and Approximation of Periodic Functions, Kluwer Academic Publishers, Dordrecht (1995).

    Book  MATH  Google Scholar 

  2. A. I. Stepanets, Methods of Approximation Theory, VSP, Utrecht (2005).

    Book  MATH  Google Scholar 

  3. B. Sz.-Nagy, “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. 1. Periodischer Fall,” Ber. Math.-Phys. Kl. Akad. Wiss., Leipzig, 90, 103–134 (1938).

  4. S. B. Stechkin, “On the best approximation of some classes of periodic functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 20, 643–648 (1956).

    MathSciNet  Google Scholar 

  5. V. N. Temlyakov, Approximation of Periodic Functions, Nova Science Publishers, New York (1993).

    MATH  Google Scholar 

  6. A. N. Kolmogorov, “On the order of remainders of the Fourier series of differentiable functions,” in: Selected Works. Mathematics and Mechanics [in Russian], Nauka, Moscow (1985), pp. 179–185.

  7. V. T. Pinkevich, “On the order of the remainders of the Fourier series of functions differentiable in the sense ofWeyl,” Izv. Akad. Nauk SSSR, Ser. Mat., 4, 521–528 (1940).

    Google Scholar 

  8. S. M. Nikol’skii, “Asymptotic estimation of the remainder in the approximation by Fourier sums,” Dokl. Akad. Nauk SSSR, 32, 386–389 (1941).

  9. A.V. Efimov, “Approximation of continuous periodic functions by Fourier sums,” Izv. Akad. Nauk SSSR, Ser. Mat., 24, 243–296 (1960).

    MathSciNet  Google Scholar 

  10. S. A. Telyakovskii, “On the norms of trigonometric polynomials and approximation of differentiable functions by the linear means of their Fourier series,” Tr. Mat. Inst. Akad. Nauk SSSR, 62, 61–97 (1961).

    Google Scholar 

  11. S. M. Nikol’skii, “Approximation of functions by trigonometric polynomials in the mean,” Izv. Akad. Nauk SSSR, Ser. Mat., 10, 207–256 (1946).

  12. S. B. Stechkin and S. A. Telyakovskii, “On the approximation of differentiable functions by trigonometric polynomials in the L metric,” Tr. Mat. Inst. Akad. Nauk SSSR, 88, 20–29 (1967).

    MathSciNet  MATH  Google Scholar 

  13. I. G. Sokolov, “Remainder of the Fourier series of differentiable functions,” Dokl. Akad. Nauk SSSR, 103, 23–26 (1955).

    MathSciNet  Google Scholar 

  14. S. G. Selivanova, “Approximation of the functions with derivative satisfying the Lipschitz condition by Fourier sums,” Dokl. Akad. Nauk SSSR, 105, 909–912 (1955).

    MathSciNet  MATH  Google Scholar 

  15. G. I. Natanson, “Approximation of functions with different structural properties in different parts of the domain of definition by Fourier sums,” Vestn. Leningrad. Univ., 19, 20–35 (1961).

    MathSciNet  Google Scholar 

  16. S. A. Telyakovskii, “Approximation of differentiable functions by the partial sums of their Fourier series,” Math. Notes, 4, 668–673 (1968).

    Article  MathSciNet  Google Scholar 

  17. S. A. Telyakovskii, “Approximation of functions of higher smoothness by Fourier sums,” Ukr. Mat. Zh., 41, No. 4, 510–518 (1989); English translation: Ukr. Math. J., 41, No. 4, 444–451 (1989).

  18. S. A. Telyakovskii, “On the approximation of differentiable functions of high smoothness by Fourier sums,” Tr. Mat. Inst. Steklov, 198, 193–211 (1992).

    Google Scholar 

  19. S. B. Stechkin, “Estimation of the remainders of the Fourier series of differentiable functions,” Tr. Mat. Inst. Akad. Nauk SSSR, 145, 126–151 (1980).

    MathSciNet  MATH  Google Scholar 

  20. A. S. Serdyuk and I. V. Sokolenko, “Approximation by Fourier sums in classes of differentiable functions with high exponents of smoothness,” Meth. Funct. Anal. Topol., 25, No. 4, 381–387 (2019).

    MathSciNet  MATH  Google Scholar 

  21. A. S. Serdyuk and I. V. Sokolenko, “Asymptotic estimates for the best uniform approximations of classes of convolution of periodic functions of high smoothness,” Ukr. Mat. Visn., 17, No. 3, 396–414 (2020); English translation: J. Math. Sci., 252, 526–540 (2021).

  22. A. S. Serdyuk and I. V. Sokolenko, “Approximation by interpolation trigonometric polynomials in metrics of the spaces Lp on the classes of periodic entire functions,” Ukr. Mat. Zh., 71, No 2, 283–292 (2019); English translation: Ukr. Math. J., 71, No 2, 322–332 (2019).

  23. A. S. Serdyuk and I. V. Sokolenko, “Uniform approximation of the classes of (ψ,β)-differentiable functions by linear methods,” Approx. Theory Funct. Relat. Probl., 8, No. 1, 181–189 (2011).

  24. A. S. Serdyuk and I. V. Sokolenko, “Approximation by linear methods of classes of (ψ,β)-differentiable functions,” Approx. Theory Funct. Relat. Probl., 10, No. 1, 245–254 (2013).

  25. A. S. Serdyuk, “Approximation of classes of analytic functions by Fourier sums in uniform metric,” Ukr. Mat. Zh., 57, No. 8, 1079–1096 (2005); English translation: Ukr. Math. J., 57, No. 8, 1275–1296 (2005).

  26. A. S. Serdyuk, “Approximation of classes of analytic functions by Fourier sums in the metric of the space Lp,Ukr. Mat. Zh., 57, No. 10, 1395–1408 (2005); English translation: Ukr. Math. J., 57, No. 10, 1635–1651 (2005).

  27. A. S. Serdyuk, “Approximation by interpolation trigonometric polynomials on classes of periodic analytic functions,” Ukr. Mat. Zh., 64, No. 5, 698–712 (2012); English translation: Ukr. Math. J., 64, No. 5, 797–815 (2012).

  28. N. P. Korneichuk, Sharp Constants in Approximation Theory [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  29. A. S. Serdyuk and T. A. Stepanyuk, “Approximation of the classes of generalized Poisson integrals by Fourier sums in metrics of the spaces Ls,Ukr. Mat. Zh., 69, No. 5, 695–704 (2017); English translation: Ukr. Math. J., 69, No. 5, 811–822 (2017).

  30. A. S. Serdyuk and T. A. Stepanyuk, “Uniform approximations by Fourier sums in classes of generalized Poisson integrals,” Anal. Math., 45, No. 1, 201–236 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  31. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Cambridge Univ. Press, Cambridge (1927).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sokolenko.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 5, pp. 685–700, May, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i5.7136.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdyuk, A.S., Sokolenko, I.V. Approximation by Fourier Sums in the Classes of Weyl–Nagy Differentiable Functions with High Exponent of Smoothness. Ukr Math J 74, 783–800 (2022). https://doi.org/10.1007/s11253-022-02101-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02101-6

Navigation