Skip to main content
Log in

Wiman-Type Inequality in Multiple-Circular Domains: Lévy’s Phenomenon and Exceptional Sets

  • Published:
Ukrainian Mathematical Journal Aims and scope

For the classical Wiman inequality Mf(r) ≤ μf(r)(lnμf(r))1/2 + ε, ε > 0, with entire functions \( f(z)={\sum}_{n=0}^{+\infty }{a}_{n}{z}^{n},z\in \mathbb{C}, \) which is true outside a set of finite logarithmic measure, P. Lévy established (1929) that, under certain additional regularity conditions imposed on ln Mf (r), the constant 1/2 can be replaced with 1/4 almost surely in a certain probability sense; here, Mf(r) = max {|f(z)| : |z| = r}, μf(r) = max {|an|rn :  n ≥ 0}, r > 0. We prove that the result established by Lévy remains true in the case of Wiman-type inequality for analytic functions in any multiply circular domain. This gives an affirmative answer to the question posed by A. Goldberg and M. Sheremeta in (1996). Earlier, affirmative answers to this question were obtained in the case of Fenton’s inequality for the entire functions of two variables (Mat. Stud., 23, No. 2 (2005)), for the entire functions of several variables (Ufa Math. J., 6, No. 2 (2014)), and for the analytic functions of several variables in a polydisc (Eur. J. Math., 6, No. 1 (2020)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Valiron, Functions Analytiques, Press Univ. de France, Paris (1954).

    MATH  Google Scholar 

  2. H. Wittich, Neuere Untersuchungen ¨uber Eindeutige Analytische Funktionen, Springer, Berlin (1955).

    Book  MATH  Google Scholar 

  3. P. C. Rosenbloom, “Probability and entire functions,” in: Studies in Mathematical Analysis and Related Topics, Calif. Univ. Press, Stanford (1962), pp. 325–332.

  4. O. B. Skaskiv and P. V. Filevych, “On the size of exceptional set in the Wiman theorem,” Mat. Stud., 12, No. 1, 31–36 (1999).

    MathSciNet  MATH  Google Scholar 

  5. O. B. Skaskiv and O. V. Zrum, “Exceptional set in the Wiman inequalities for entire functions,” Mat. Stud., 21, No. 1, 13–24 (2004).

    MathSciNet  MATH  Google Scholar 

  6. A. O. Kuryliak and O. B. Skaskiv, “Wiman’s type inequality for analytic and entire functions and h-measure of an exceptional set,” Carpathian Math. Publ., 12, No. 2, 492–498 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Lévy, “Sur la croissance de fonctions entière,” Bull. Soc. Math. France, 58, 29–59, 127–149 (1930).

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Bergweiler, “On meromorphic function that share three values and on the exceptional set in Wiman–Valiron theory,” Kodai Math. J., 13, No. 1, 1–9 (1990); DOI: https://doi.org/10.2996/kmj/1138039154.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. M. Salo, O. B. Skaskiv, and O. M. Trakalo, “On the best possible description of exceptional set inWiman–Valiron theory for entire function,” Mat. Stud., 16, No. 2, 131–140 (2001).

    MathSciNet  MATH  Google Scholar 

  10. O. B. Skaskiv and O. M. Trakalo, “On exceptional set in the Borel relation for multiple entire Dirichlet series,” Mat. Stud., 15, No. 2, 163–172 (2001).

    MathSciNet  MATH  Google Scholar 

  11. P. V. Filevych, “An exact estimate for the measure of the exceptional set in the Borel relation for entire functions,” Ukr. Mat. Zh., 53, No. 2, 286–288 (2001); English translation: Ukr. Math. J., 53, No. 2, 328–332 (2001); https://doi.org/https://doi.org/10.1023/A:1010489609188.

  12. O. B. Skaskiv and O. M. Trakalo, “Sharp estimate of the exceptional set in Borel’s relation for entire functions of several complex variables,” Mat. Stud., 18, No. 1, 53–56 (2002).

    MathSciNet  MATH  Google Scholar 

  13. O. B. Skaskiv and D. Yu. Zikrach, “On the best possible description of an exceptional set in asymptotic estimates for Laplace–Stieltjes integrals,” Mat. Stud., 35, No. 2, 131–141 (2011).

    MathSciNet  MATH  Google Scholar 

  14. T. M. Salo and O. B. Skaskiv, “Minimum modulus of lacunary power series and h-measure of exceptional sets,” Ufa Math. J., 9, No. 4, 135–144 (2017); DOI: https://doi.org/10.13108/2017-9-4-135.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. O. Kuryliak and O. B. Skaskiv, “Wiman’s type inequality in multiple-circular domain,” Axioms, 2021, No. 10(4), Article ID: 348 (2021); https://doi.org/https://doi.org/10.3390/axioms10040348.

  16. T. Kővari, “On the maximum modulus and maximal term of functions analytic in the unit disc,” J. London Math. Soc., 41, 129–137 (1966); https://doi.org/https://doi.org/10.1112/jlms/s1-41.1.129.

  17. N. V. Suleimanov, “An estimate of the Wiman–Valiron type for a power series with finite radius of convergence and its sharpness,” Dokl. Akad. Nauk SSSR, 253, No. 4, 822–824 (1980).

    MathSciNet  Google Scholar 

  18. P. Erdős and A. Rényi, “On random entire function,” Zastosow. Mat., 10, 47–55 (1969).

    MathSciNet  MATH  Google Scholar 

  19. J. M. Steele, “SharperWiman inequality for entire functions with rapidly oscillating coefficients,” J. Math. Anal. Appl., 123, 550–558 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. V. Filevych, “Some classes of entire functions in which the Wiman–Valiron inequality can be almost certainly improved,” Mat.Stud., 6, 59–66 (1996).

    MathSciNet  MATH  Google Scholar 

  21. P. V. Filevych, “Baire categories and Wiman’s inequality for entire functions,” Mat. Stud., 20, No. 2, 215–221 (2003).

    MathSciNet  MATH  Google Scholar 

  22. O. B. Skaskiv, “Random gap power series and Wiman’s inequality,” Mat. Stud., 30, No. 1, 101–106 (2008).

    MathSciNet  MATH  Google Scholar 

  23. O. B. Skaskiv and A. O. Kuryliak, “Direct analogs of Wiman’s inequality for analytic functions in the unit disk,” Carpathian Math. Publ., 2, No. 1, 109–118 (2010).

    MATH  Google Scholar 

  24. A. O. Kuryliak, O. B. Skaskiv, and I. E. Chyzhykov, “Baire categories and Wiman’s inequality for analytic functions,” Bull. Soc. Sci. Lett. Lodz, 62, No. 3, 17–33 (2012).

    MathSciNet  MATH  Google Scholar 

  25. O. V. Zrum and O. B. Skaskiv, “On Wiman’s inequality for random entire functions of two variables,” Mat. Stud., 23, No. 2, 149–160 (2005).

    MathSciNet  MATH  Google Scholar 

  26. P. C. Fenton, “Wiman–Valiron theory in two variables,” Trans. Amer. Math. Soc., 347, No. 11, 4403–4412 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. O. Kuryliak, O. B. Skaskiv, and O. V. Zrum, “Lévy’s phenomenon for entire functions of several variables,” Ufa Math. J., 6, No. 2, 118–127 (2014).

    Article  Google Scholar 

  28. J. Gopala Krishna and I. H. Nagaraja Rao, “Generalised inverse and probability techniques and some fundamental growth theorems in ℂk,J. Indian Math. Soc., 41, 203–219 (1977).

    MathSciNet  MATH  Google Scholar 

  29. A. Schumitzky, Wiman–Valiron Theory for Functions of Several Complex Variables, Ph. D. Thesis, Ithaca, Cornell Univ. (1965).

  30. A. Schumitzky, “A probabilistic approach to the Wiman–Valiron theory for entire functions of several complex variables,” Complex Variables, 13, 85–98 (1989).

    MathSciNet  MATH  Google Scholar 

  31. A. O. Kuryliak and O. B. Skaskiv, “Wiman’s type inequalities without exceptional sets for random entire functions of several variables,” Mat. Stud., 38, No. 1, 35–50 (2012).

    MathSciNet  MATH  Google Scholar 

  32. I. F. Bitlyan and A. A. Goldberg, “Wiman–Valiron’s theorem for entire functions of several complex variables,” Vestn. Leningrad Univ., Ser. Mat., Mekh., Astron., 2, No. 131, 27–41 (1959).

  33. O. B. Skaskiv and O. M. Trakalo, “On classical Wiman’s inequality for multiple entire Dirichlet series,” Mat. Met. Fiz.-Mekh. Polya, 43, No. 3, 34–39 (2000).

    MATH  Google Scholar 

  34. A. O. Kuryliak, S. I. Panchuk, and O. B. Skaskiv, “Gol’dberg type inequality for entire functions and diagonal maximal term,” Mat. Stud., 54, No. 2, 135–145 (2020); DOI:https://doi.org/10.30970/ms.54.2.135-145.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. O. Kurylyak, O. B. Skaskiv, and L. O. Shapovalovs’ka, “Wiman-type inequality for functions analytic in a polydisk,” Ukr. Mat. Zh., 68, No. 1, 78–86 (2016); English translation: Ukr. Math. J., 68, No. 1, 83–93 (2016).

  36. A. Kuryliak, O. Skaskiv, and S. Skaskiv, “Lévy’s phenomenon for analytic functions on a polydisk,” Eur. J. Math., 6, No. 1, 138–152 (2020); DOI.org/https://doi.org/10.1007/s40879-019-00363-2.

  37. A. Kuryliak and V. Tsvigun, “Wiman’s type inequality for multiple power series in the unbounded cylinder domain,” Mat. Stud., 49, No. 1, 29–51 (2018); DOI:https://doi.org/10.15330/ms.49.1.29-51.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kuryliak.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 5, pp. 650–661, May, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i5.7137.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuryliak, A.O., Skaskiv, O.B. Wiman-Type Inequality in Multiple-Circular Domains: Lévy’s Phenomenon and Exceptional Sets. Ukr Math J 74, 743–756 (2022). https://doi.org/10.1007/s11253-022-02098-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02098-y

Navigation