Skip to main content
Log in

Sharp Remez-Type Inequalities Estimating the Lq-Norm of a Function Via Its Lp-Norm

  • Published:
Ukrainian Mathematical Journal Aims and scope

For any q ≥ p > 0, 𝛼 = (r + 1/q)/(r + 1/p), fp ∈ [0,∞], and β ∈ [0, 2𝜋), we prove a sharp Remez-type inequality

$$ {\left\Vert x\right\Vert}_q\le \frac{{\left\Vert {\varphi}_r+c\right\Vert}_q}{{\left\Vert {\varphi}_r+c\right\Vert}_{L_p\left(\left[0,2\uppi \right]/{B}_y\left(\beta \right)\right)}^{\alpha }}{\left\Vert {x}^{(r)}\right\Vert}_{L_p\left(\left[0,2\uppi \right]/B\right)}^{\alpha }{\left\Vert {x}^{(r)}\right\Vert}_{\infty}^{1-\alpha } $$

for 2𝜋-periodic functions xLr, which have zeros and satisfy the condition

$$ {\left\Vert {x}_{+}\right\Vert}_p\kern0.5em {\left\Vert {x}_{-}\right\Vert}_p^{-1}={f}_p,\kern10em (1) $$

where 𝜑r is Euler’s perfect spline of order r, the number c is such that the function x = 𝜑r +c satisfies condition (1), B is an arbitrary Lebesgue-measurable set such that

$$ \mu B\le \beta {\left({\left\Vert {\varphi}_r+c\right\Vert}_p{\left\Vert {x}^{(r)}\right\Vert}_{\infty }{\left\Vert x\right\Vert}_p^{-1}\right)}^{-1/\left(r+1/p\right)}, $$

the set By(β) is defined by By(β) := {t ∈ [0, 2𝜋] : |𝜑r(t) + c| > y(β)}, and moreover, μBy(β) = β. We also establish sharp Remez-type inequalities of various metrics for trigonometric polynomials and polynomial splines satisfying relation (1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Comparison of permutations and Kolmogorov–Nagy type inequalities for periodic functions,” in: B. Bojanov (editor), Approximation Theory: A Volume Dedicated to Blagovest Sendov, Darba, Sofia (2002), pp. 24–53.

  2. V. A. Kofanov, “On some extremal problems of different metrics for differentiable functions on the axis,” Ukr. Mat. Zh., 61, No. 6, 765–776 (2009); English translation: Ukr. Math. J., 61, No. 6, 908–922 (2009).

  3. V. A. Kofanov, “Inequalities of different metrics for differentiable periodic functions,” Ukr. Mat. Zh., 67, No. 2, 202–212 (2015); English translation: Ukr. Math. J., 67, No. 2, 230–242 (2015).

  4. B. Bojanov and N. Naidenov, “An extension of the Landau–Kolmogorov inequality. Solution of a problem of Erdos,” J. Anal. Math., 78, 263–280 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. A. Kofanov, “Sharp upper bounds of norms of functions and their derivatives on classes of functions with given comparison function,” Ukr. Mat. Zh., 63, No. 7, 969–984 (2011); English translation: Ukr. Math. J., 63, No. 7, 1118–1135 (2011).

  6. E. Remes, “Sur une propriété extrémale des polynomes de Tchebychef,” Zap. Nauk.-Doslid. Inst. Mat. Mekh. Kharkiv. Mat. Tovar., Ser. 4, 13, Issue 1, 93–95 (1936).

  7. M. I. Ganzburg, “On a Remez-type inequality for trigonometric polynomials,” J. Approx. Theory, 164, 1233–1237 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Nursultanov and S. Tikhonov, “A sharp Remez inequality for trigonometric polynomials,” Constr. Approx., 38, 101–132 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York (1995).

    Book  MATH  Google Scholar 

  10. M. I. Ganzburg, “Polynomial inequalities on measurable sets and their applications,” Constr. Approx., 17, 275–306 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Tikhonov and P. Yuditski, Sharp Remez inequality https://www.researchgate.net/publication/327905401.

  12. V. A. Kofanov, “Sharp Remez-type inequalities for differentiable periodic functions, polynomials, and splines,” Ukr. Mat. Zh., 68, No. 2, 227–240 (2016); English translation: Ukr. Math. J., 68, No. 2, 253–268 (2016).

  13. V. A. Kofanov, “Sharp Remez-type inequalities of different metrics for differentiable periodic functions, polynomials, and splines,” Ukr. Mat. Zh., 69, No. 2, 173–188 (2017); English translation: Ukr. Math. J., 69, No. 2, 205–223 (2017).

  14. A. E. Gaidabura and V. A. Kofanov, “Sharp Remez-type inequalities of various metrics in the classes of functions with given comparison function,” Ukr. Mat. Zh., 69, No. 11, 1472–1485 (2017); English translation: Ukr. Math. J., 69, No. 11, 1710–1726 (2018).

  15. V. A. Kofanov, “‘Sharp Kolmogorov–Remez-type inequalities for periodic functions of low smoothness,” Ukr. Mat. Zh., 72, No. 4, 483–493 (2020); English translation: Ukr. Math. J., 72, No. 4, 555–567 (2020).

  16. V. A. Kofanov and I. V. Popovich, ‘Sharp Remez-type inequalities of various metrics with asymmetric restrictions imposed on the functions,” Ukr. Mat. Zh., 72, No. 7, 918–927 (2020); English translation: Ukr. Math. J., 72, No. 7, 1068–1079 (2020).

  17. V. O. Kofanov, “‘On the relationship between sharp Kolmogorov-type inequalities and sharp Kolmogorov–Remez-type inequalities,” Ukr. Mat. Zh., 73, No. 4, 506–514 (2021); English translation: Ukr. Math. J., 73, No. 4, 592– 600 (2021).

  18. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Comparison of exact constants in inequalities for derivatives of functions defined on the real axis and a circle,” Ukr. Mat. Zh., 55, No. 5, 579–589 (2003); English translation: Ukr. Math. J., 55, No. 5, 699–711 (2003).

  19. N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extreme Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).

    MATH  Google Scholar 

  20. A. N. Kolmogorov, “On the inequalities between the upper bounds of successive derivatives of functions on an infinite interval,” in: Selected Works. Mathematics and Mechanics [in Russian], Nauka, Moscow (1985), pp. 252–263.

  21. N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).

    Google Scholar 

  22. V. M. Tikhomirov, “Widths of sets in function spaces and the theory of best approximations,” Usp. Mat. Nauk, 15, No. 3, 81–120 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kofanov.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 5, pp. 635–649, May, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i5.6836.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kofanov, V.A., Olexandrova, T.V. Sharp Remez-Type Inequalities Estimating the Lq-Norm of a Function Via Its Lp-Norm. Ukr Math J 74, 726–742 (2022). https://doi.org/10.1007/s11253-022-02097-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02097-z

Navigation