Skip to main content
Log in

Nonlocal Symmetries of the System of Chemotaxis Equations with Derivative Nonlinearity

  • Published:
Ukrainian Mathematical Journal Aims and scope

By using nonlocal equivalence transformations, the system of chemotaxis equations is associated with a system of convection-diffusion equations. The Lie symmetry of the obtained system is used to construct nonlocal ansatzes, to reduce it, and to find the exact solutions of the system of chemotaxis equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Adler, “Chemotaxis bacteria,” Science, 153, 708–716 (1996).

    Article  Google Scholar 

  2. I. S. Akhatov, R. K. Gazizov, and N. K. Ibragimov, “Nonlocal symmetries. Heuristic approach,” J. Sov. Math., 55, No. 1, 1401–1450 (1991); https://doi.org/https://doi.org/10.1007/BF01097533.

  3. G. Bluman and S. Kumei, “Symmetry-based algorithms to relate partial differential equations. I. Local symmetries,” Europ. J. Appl. Math., 1, 189–216 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Bluman and S. Kumei, “Symmetry-based algorithms to relate partial differential equations. II. Linearization by nonlocal symmetries,” Europ. J. Appl. Math., 1, 217–223 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. W. Bluman and J. D. Cole, “The general similarity solution of the heat equation,” J. Math. Mech., 18, 1025–1042 (1968/69).

  6. G. W. Bluman, G. J. Reid, and S. Kumei, “New classes of symmetries for partial differential equations,” J. Math. Phys., 29, No. 4, 806–811 (1998); https://doi.org/https://doi.org/10.1063/1.527974.

  7. G. W. Bluman, A. F. Cheviakov, and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York (2010).

    Book  MATH  Google Scholar 

  8. R. M. Cherniha and J. R. King, “Lie symmetries of non-linear multidimensional reaction-diffusion systems: I,” J. Phys. A, 33, 267–282 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. M. Cherniha and J. R. King, “Lie symmetries of non-linear multidimensional reaction- diffusion systems: I. Addendum,” J. Phys. A, 33, 7839–7841 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. M. Cherniha and J. R. King, “Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II,” J. Phys. A, 36, 405–425 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. M. Cherniha and J. R. King, “Nonlinear reaction-diffusion systems with variable diffusivities: Lie symmetries, ansatze, and exact solutions,” J. Math. Anal. Appl., 308, 11–35 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Cherniha, M. Serov, and O. Pliukhin, Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, CRC Press, Boca Raton (2018); https://doi.org/https://doi.org/10.1201/9781315154848.

  13. A. F. Cheviakov, “Symbolic computation of equivalence transformations and parameter reduction for nonlinear physical models,” Comput. Phys. Comm., 220, 56–73 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. W. I. Fushchych, W. M. Shtelen, and M. I. Serov, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer AP, Dordrecht (1993).

    Book  Google Scholar 

  15. V. L. Katkov, “The group classification of solutions of the Hopf equations,” Zh. Prikl. Mekh. Tekh. Fiz., 6, 105–106 (1965).

    MathSciNet  Google Scholar 

  16. E. F. Keller and L. A. Segel, “Model for chemotaxis,” J. Theor. Biol., 30, 225–234 (1971).

    Article  MATH  Google Scholar 

  17. J. R. King, “Some non-local transformations between nonlinear diffusion equations,” J. Phys. A: Math. Gen., 23, 5441–5464 (1990); https://stacks.iop.org/0305-4470/23/i=23/a=019.

    Article  MATH  Google Scholar 

  18. S. Lie, “Uber die Integration durch bestimmte Integrale von einer Klasse lineare partiellen Differentialgleichungen,” Arch. Math., 6, No. 3, 328–368 (1881); https://doi.org/https://doi.org/10.1016/0167-2789(90)90123-7.

  19. I. Lisle, Equivalence Transformations for Classes of Differential Equations, Ph.D. Thesis, Doctoral Dissertation, University of British Columbia (1992).

  20. V. Nanjundiah, “Chemotaxis, signal relaying, and aggregation morphology,” J. Theor. Biol., 42, No. 1, 63–105 (1973).

    Article  Google Scholar 

  21. A. G. Nikitin, “Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. I. Generalized Ginzburg–Landau equations,” J. Math. Anal. Appl., 324, 615–628 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. G. Nikitin, “Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. II. Generalized Turing systems,” J. Math. Anal. Appl., 332, 666–690 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. G. Nikitin, “Group classification of systems of nonlinear reaction-diffusion equations,” Ukr. Math. Bull., 2, 153–204 (2005).

    MathSciNet  Google Scholar 

  24. A. G. Nikitin, “Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. I. Generalized Ginzburg–Landau equations,” J. Math. Anal. Appl., 324, 615–628 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. G. Nikitin, “Group classification of systems of nonlinear reaction-diffusion equations with triangular diffusion matrix,” Ukr. Mat. Zh., 59, No. 3, 395–411 (2007)); English translation: Ukr. Math. J., 59, No. 3, 439–458 (2007).

  26. A. G. Nikitin and R. J. Wiltshire, “Symmetries of systems of nonlinear reaction-diffusion equations,” in: Proc. of the Third Internat. Conf., July 12–18, 1999, Kiev, A. M. Samoilenko (editor), Symmetries in Nonlinear Mathematical Physics, Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev (2000), pp. 47–59.

  27. A. G. Nikitin and R. J. Wiltshire, “System of reaction-diffusion equations and their symmetry properties,” J. Math. Phys., 42, 1666–1688 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  28. R. O. Popovych, O. O. Vaneeva, and N. M. Ivanova, “Potential nonclassical symmetries and solutions of fast diffusion equation,” Phys. Lett. A, 362, 166–173 (2007); Preprint arXiv: math-ph/0506067.

  29. M. I. Serov, T. O. Karpaliuk, O. G. Pliukhin, and I. V. Rassokha, “Systems of reaction-convection-diffusion equations invariant under Galilean algebras,” J. Math. Anal. Appl., 422, No. 1, 185–211 (2015); https://doi.org/https://doi.org/10.1016/j.jmaa.2014.08.018.

  30. M. I. Serov and Yu. V. Prystavka, “Nonlocal anz¨atze, reduction, and some exact solution for the system of the van der Waals equations, I,” Math. Anal. Appl., 481, 98–117, 123442 (2020).

  31. V. Tychynin, “New nonlocal symmetries of diffusion-convection equations and their connection with generalized hodograph transformation,” Symmetry, 7, No. 4, 1751–1767 (2015); https://doi.org/https://doi.org/10.3390/sym7041751.

  32. G. R. Ivanitskii, A. B. Medvinskii, and M. A. Tsyganov, “From disorder to ordering by an example of motion of microorganisms,” Usp. Fiz. Nauk, 161, No. 4, 13–71 (1991).

    Article  Google Scholar 

  33. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    MATH  Google Scholar 

  34. P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1986).

    Book  MATH  Google Scholar 

  35. M. I. Serov and N. V. Ichans’ka, Lie and Conditional Symmetries for Nonlinear Evolutionary Equations [in Ukrainian], Poltava National Technical University, Poltava (2010).

  36. M. I. Serov and T. O. Karpalyuk, Galilei Relativity Principle for Evolutionary Equations [in Ukrainian], Kyiv (2020).

  37. M. I. Serov and O. M. Omelyan, Symmetry Properties of the System of Nonlinear Chemotaxis Equations [in Ukrainian], Poltava National Technical University, Poltava (2011).

    Google Scholar 

  38. M. I. Serov, O. M. Omelyan, and R. M. Cherniha, “Linearization of the systems of nonlinear diffusion equations with the help of nonlocal transformations,” Dop. Nats. Akad. Nauk Ukr., No. 10, 39–45 (2004).

  39. V. I. Fushchych, M. I. Serov, and T. K. Amerov, “Nonlocal ansatzes for the nonlinear one-dimensional heat conduction equation,” Dop. Akad. Nauk Ukr., 26–30 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Podoshvelev.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 3, pp. 373–388, March, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i3.6997.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serov, M.I., Podoshvelev, Y.G. Nonlocal Symmetries of the System of Chemotaxis Equations with Derivative Nonlinearity. Ukr Math J 74, 420–438 (2022). https://doi.org/10.1007/s11253-022-02073-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02073-7

Navigation