Skip to main content
Log in

Exact Solutions with Generalized Separation of Variables in the Nonlinear Heat Equation

  • Published:
Ukrainian Mathematical Journal Aims and scope

We propose a method for the construction of exact solutions to nonlinear heat equation based on the classical method of separation of variables, its generalization, and the Lie reduction method. We consider substitutions reducing the nonlinear heat equation to ordinary differential equations and construct the classes of exact solutions by the method of generalized separation of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ovsyannikov, “Group properties of nonlinear heat-conduction equations,” Dokl. Akad. Nauk SSSR, 125, No. 3, 492–495 (1959).

    MathSciNet  MATH  Google Scholar 

  2. A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman & Hall/CRC, Boca Raton (2004).

    MATH  Google Scholar 

  3. Ya. B. Zeldovich and A. S. Kompaneets, “On the theory of propagation of heat for the temperature-dependent heat conduction,” in: Collection of Works Dedicated to the 70th Birthday of A. F. Ioffe [in Russian], Izv. Akad. Nauk SSSR (1950), pp. 61–71.

  4. G. I. Barenblat, “On some unsteady motions of liquid and gas in porous media,” Prikl. Mat. Mekh., 16, No. 1, 67–78 (1952).

    Google Scholar 

  5. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Modes with Peaking in Problems for Quasilinear Parabolic Equations [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  6. G. A. Rudykh and É. I. Semenov, “On new exact solutions of the one-dimensional nonlinear diffusion equation with a source (sink),” Zh. Vychisl. Mat. Mat. Fiz., 38, No. 6, 971–977 (1998).

    MathSciNet  MATH  Google Scholar 

  7. D. Zwillinger, Handbook of Differential Equations, Academic Press, San Diego, Boston (1989).

    MATH  Google Scholar 

  8. S. N. Aristov, “Periodic and localized exact solutions of the equation ht = ∆ln h,Prikl. Mekh. Tekh. Fiz., 40, No. 1, 22–26 (1999).

    MATH  Google Scholar 

  9. G.W. Bluman and S. Kumei, “On the remarkable nonlinear diffusion equation [a(u+b)2ux]x−ut = 0,” J. Math. Phys., 21, No. 5, 1019–1023 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Kh. Ibragimov, Groups of Transformations in Mathematical Physics [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  11. N. H. Ibragimov (editor), CRC Handbook of the Lie Group to Differential Equations, Vol. 1. Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton (1994).

  12. I. Sh. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Nonlocal symmetries. Heuristic approach,” in: VINITI Series in Contemporary Problems of Mathematics [in Russian], Vol. 34, VINITI, Akad. Nauk SSSR (1989), pp. 3–83.

  13. G. R. Philip, “General method of exact solutions of the concentration-dependent diffusion equation,” Austral. J. Phys., 13, No. 1, 13–20 (1960).

    Article  MathSciNet  Google Scholar 

  14. P. W. Doyle and P. Vassiliou, “Separation of variables for the 1-dimensional nonlinear diffusion equation,” Int. J. Non-Lin. Mech., 33, No. 2, 315–326 (1998).

    Article  MATH  Google Scholar 

  15. A. D. Polyanin and A. I. Zhurov, “Separation of variables in PDEs using nonlinear transformations: applications to reaction-diffusion type equations,” Appl. Math. Lett., 100, 106055 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. D. Polyanin, “Functional separable solutions of nonlinear convection-diffusion equations with variable coefficients,” Comm. Nonlin. Sci. Numer. Simul., 73, 379–390 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Fushchych, “Ansatz’95,” J. Nonlin. Math. Phys., 2, No. 3-4, 216–235 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Z. Zhdanov and V. I. Lahno, “Conditional symmetry of a porous medium equation,” Phys. D, 122, 178–186 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Kunzinger and R. O. Popovych, “Singular reduction operators in two dimensions,” J. Phys. A, 41, 505201 (2008); Preprint arXiv:0808.3577 (2008).

  20. V. M. Boyko, M. Kunzinger, and R. O. Popovych, “Singular reduction modules of differential equations,” J. Math. Phys., 57, 101503 (2016); Preprint arXiv:1201.3223.

  21. A. F. Barannyk, T. A. Barannyk, and I. I. Yuryk, “Separation of variables for nonlinear equations of hyperbolic and Korteweg–de Vries type,” Rep. Math. Phys., 68, No. 1, 92–105 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. F. Barannyk, T. A. Barannyk, and I. I. Yuryk, “Generalized separation of variables for nonlinear equation \( {u}_{tt}=F(u){u}_{xx}+{aF}^{\prime }(u){u}_x^2 \),Rep. Math. Phys., 71, No. 1, 1–13 (2013).

  23. A. F. Barannyk, T. A. Barannyk, and I. I. Yuryk, “A method for the construction of exact solutions to the nonlinear heat equation ut = (F(u)ux)x + G(u)ux + H(u),Ukr. Mat. Zh., 71, No. 11, 1443–1454 (2019); English translation: Ukr. Math. J., 71, No. 11, 1651–1663 (2020).

  24. G. M. Fikhtengol’ts, A Course in Differential and Integral Calculus [in Russian], Vol. 2, Fizmatgiz, Moscow (1959).

  25. A. G. Nikitin and T. A. Barannyk, “Solitary wave and other solutions for nonlinear heat equations,” Cent. Eur. J. Math., 2, No. 5, 840–858 (2004).

    MathSciNet  MATH  Google Scholar 

  26. R. O. Popovych, O. O. Vaneeva, and N. M. Ivanova, “Potential nonclassical symmetries and solutions of fast diffusion equation,” Phys. Lett. A, 362, 166–173 (2007); Preprint arXiv:math-ph/0506067.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Yuryk.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 3, pp. 294–310, March, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i3.6667.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barannyk, A.F., Barannyk, T.A. & Yuryk, I.I. Exact Solutions with Generalized Separation of Variables in the Nonlinear Heat Equation. Ukr Math J 74, 330–349 (2022). https://doi.org/10.1007/s11253-022-02066-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02066-6

Navigation