Skip to main content
Log in

Optimization of the Methods of Numerical Differentiation for Bivariate Functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

For the problem of numerical differentiation of bivariate functions with mixed smoothness, we determine the exact orders for the minimal radius of Galerkin information and construct a truncation method, which is optimal in a sense of the indicated quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ahn, U. J. Choi, and A. G. Ramm, “A scheme for stable numerical differentiation,” J. Comput. Appl. Math., 186, No. 2, 325–334 (2006).

    Article  MathSciNet  Google Scholar 

  2. T. F. Dolgopolova and V. K. Ivanov, “On numerical differentiation,” Zh. Vychisl. Mat. Mat. Fiz., 6, No. 3, 570–576 (1966).

    MathSciNet  Google Scholar 

  3. D. Dũng, V. Temlyakov, and T. Ullrich, Hyperbolic Cross Approximation, CRM Barselona, Birkhäuser (2018).

  4. C. W. Groetsch, “Optimal order of accuracy in Vasin’s method for differentiation of noisy functions,” J. Optim. Theory Appl., 74, No. 2, 373–378 (1992).

    Article  MathSciNet  Google Scholar 

  5. M. Hanke and O. Scherzer, “Inverse problems light: numerical differentiation,” Amer. Math. Monthly, 108, No. 6, 512–521 (2001).

    Article  MathSciNet  Google Scholar 

  6. S. Lu, V. Naumova, and S. V. Pereverzev, “Legendre polynomials as a recommended basis for numerical differentiation in the presence of stochastic white noise,” Inverse Ill-Posed Probl., 21, No. 2, 193–216 (2013).

    MathSciNet  MATH  Google Scholar 

  7. Z. Meng, Z. Zhaoa, D. Mei, and Y. Zhou, “Numerical differentiation for two-dimensional functions by a Fourier extension method,” Inverse Probl. Sci. Eng., 28, No. 1, 1–18 (2020).

    Article  MathSciNet  Google Scholar 

  8. S. G. Solodky and G. L. Myleiko, “The minimal radius of Galerkin information for severely ill-posed problems,” Inverse Ill-Posed Probl., 22, No. 5, 739–757 (2014).

    MathSciNet  MATH  Google Scholar 

  9. H. L. Myleiko and S. H. Solodkyi, “Hyperbolic cross and the complexity of various classes of ill-posed linear problems,” Ukr. Mat. Zh., 69, No. 7, 951–963 (2017); English translation: Ukr. Math. J., 69, No. 7, 1107–1122 (2017).

  10. C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves, Springer, Berlin (1967).

  11. G. Nakamura, S. Z. Wang, and Y. B. Wang, “Numerical differentiation for the second order derivatives of functions of two variables,” J. Comput. Appl. Math., 212, No. 2, 341–358 (2008).

    Article  MathSciNet  Google Scholar 

  12. S. V. Pereverzev and S. G. Solodky, “The minimal radius of Galerkin information for the Fredholm problem of the first kind,” J. Complexity, 12, No. 4, 401–415 (1996).

    Article  MathSciNet  Google Scholar 

  13. Z. Qian, C.-L. Fu, X.-T. Xiong, and T. Wei, “Fourier truncation method for high order numerical derivatives,” Appl. Math. Comput., 181, No. 2, 940–948 (2006).

    MathSciNet  MATH  Google Scholar 

  14. A. G. Ramm, “On numerical differentiation,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 11, 131–134 (1968).

  15. S. G. Solodky and K. K. Sharipov, “Summation of smooth functions of two variables with perturbed Fourier coefficients,” Inverse Ill-Posed Probl., 23, No. 3, 287–297 (2015).

    MathSciNet  MATH  Google Scholar 

  16. S. G. Solodky and S. A. Stasyuk, “Estimates of efficiency for two methods of stable numerical summation of smooth functions,” J. Complexity, 56, Paper No. 101422 (2020); https://doi.org/10.1016/j.jco.2019.101422.

  17. E. V. Semenova, S. G. Solodky, and S. A. Stasyuk, “Application of Fourier truncation method to numerical differentiation for bivariate functions,” Comput. Methods Appl. Math. (2022); https://doi.org/10.1515/cmam-2020-0138.

  18. E. V. Semenova, S. H. Solodkyi, and S. A. Stasyuk, “Truncation method in problems of numerical summation and differentiation,” in: Contemporary Problems in Mathematics and Its Applications. II [in Ukrainian], Proc. of the Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, 18, No. 1, (2021), pp. 644–672.

  19. J. F. Traub and H. Wozniakowski, A General Theory of Optimal Algorithms, Academic Press, New York (1980).

  20. V. V. Vasin, “Regularization of the problem of numerical differentiation,” Mat. Zap. Ural. Univ., 7, No. 2, 29–33 (1969).

    MathSciNet  Google Scholar 

  21. Z. Zhao, “A truncated Legendre spectral method for solving numerical differentiation,” Int. J. Comput. Math., 87, 3209–3217 (2010).

    Article  MathSciNet  Google Scholar 

  22. Z. Zhao, Z. Meng, L. Zhao, L. You, and O. Xie, “A stabilized algorithm for multi-dimensional numerical differentiation,” J. Algorithms Comput. Technol., 10, No. 2, 73–81 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Stasyuk.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 2, pp. 253–273, February, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i2.6906.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solodky, S.G., Stasyuk, S.A. Optimization of the Methods of Numerical Differentiation for Bivariate Functions. Ukr Math J 74, 289–313 (2022). https://doi.org/10.1007/s11253-022-02064-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02064-8

Navigation