Skip to main content
Log in

Functional-Differential Games with Nonatomic Difference Operator

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study a differential pursuit game in a system dynamically described by a linear functional differential equation. The coefficients of the equation are closed linear operators acting in Hilbert spaces. The operator at the derivative of state depends on the current time and is, generally speaking, not invertible. Our main assumption is a restriction imposed on the characteristic operator pencil of the equation on a ray of the real positive semiaxis. The solutions of the equation are represented with the help of the formula of variation of constants in which the effect of delay is taken into account as a result of summation of shift-type operators. To establish conditions under which the dynamic vector of the system approaches a cylindrical terminal set, we use constraints imposed on the support functionals of two sets determined by the behaviors of the pursuer and evader. We also present an example of differential game in a pseudoparabolic system described by a partial functional-differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Isaacs, Differential Games, Wiley & Sons, New York (1965).

    MATH  Google Scholar 

  2. A. Friedman, “Differential games of pursuit in Banach spaces,” Math. Anal. Appl., 25, 93–113 (1969); https://doi.org/10.1016/0022-247X(69)90215-7.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. A. Chikrii, Conflict-Controlled Processes, Springer Science and Business Media, Dordrecht (2013); https://doi.org/10.1007/978-94-017-1135-7.

  4. J. Yong, Differential Games: A Concise Introduction, World Scientific, New Jersey (2015); https://doi.org/10.1142/9121.

  5. N. N. Krasovskii and Yu. S. Osipov, “Linear differential-difference games,” Dokl. Akad. Nauk SSSR, 197, 777–780 (1971).

    MathSciNet  Google Scholar 

  6. E. N. Chukwu, “Capture in linear functional differential games of pursuit,” J. Math. Anal. Appl., 70, 326–336 (1979); https://doi.org/10.1016/0022-247X(79)90047-7.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. A. Chikrii and G. Ts. Chikrii, “Group pursuit in differential-difference games,” Differents. Uravn., 20, 802–810 (1984).

    MathSciNet  Google Scholar 

  8. P. V. Reddy and J. C. Engwerda, “Feedback properties of descriptor systems using matrix projectors and applications to descriptor differential games,” SIAM J. Matrix Anal. Appl., 34, 686–708 (2013); https://doi.org/10.1137/100819321.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. H. Lightbourne and S. M. Rankin, “A partial functional differential equation of Sobolev type,” J. Math. Anal. Appl., 93, 328–337 (1983); https://doi.org/10.1016/0022-247X(83)90178-6.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York (1993).

    Book  Google Scholar 

  11. A. G. Rutkas and L. A. Vlasenko, “Time-domain descriptor models for circuits with multiconductor transmission lines and lumped elements,” in: Proc. of the 5th IEEE Internat. Conf. on Ultrawideband and Ultrashort Impulse Signals (Sevastopol, Crimea) (2010), pp. 102–104; https://doi.org/10.1109/UWBUSIS.2010.5609106.

  12. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Providence, RI (1957).

    MATH  Google Scholar 

  13. K. Yosida, Functional Analysis, Springer, Berlin (1980).

    MATH  Google Scholar 

  14. L. A. Vlasenko and A. G. Rutkas, “Optimal control of undamped Sobolev-type retarded systems,” Math. Notes, 102, 297–309 (2017); https://doi.org/10.1134/S0001434617090012.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York (1983).

    Book  Google Scholar 

  16. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York (1971).

    Book  Google Scholar 

  17. O. A. Boichuk, V. L. Makarov, and V. A. Feruk, “A criterion of solvability of resonant equations and construction of their solutions,” Ukr. Mat. Zh., 71, No. 10, 1321–1330 (2019); English translation: Ukr. Math. J., 71, No. 10, 1510–1521 (2020); 10.1007/s11253-020-01728-7.

  18. A. A. Chikrii, “An analytical method in dynamic pursuit games,” Proc. Steklov Inst. Math., 271, 69–85 (2010); https://doi.org/10.1134/S0081543810040073.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. A. Vlasenko and A. G. Rutkas, “On a differential game in a system described by an implicit differential-operator equation,” Different. Equat., 51, 798–807 (2015); https://doi.org/10.1134/S0012266115060117.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. A. Vlasenko and A. A. Chikrii, “On a differential game in a system with distributed parameters,” Proc. Steklov Inst. Math., 292, Issue 1 Supplement, 276–285 (2016); https://doi.org/10.1134/S0081543816020243.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. V. Balakrishnan, Introduction to Optimization Theory in a Hilbert Space, Springer, Berlin (1971).

    Book  Google Scholar 

  22. R. E. Showalter and T.W. Ting, “Pseudoparabolic partial differential equations,” SIAM J. Math. Anal., 1, 1–26 (1970); https://doi.org/10.1137/0501001.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Rutkas and L. Vlasenko, “Implicit operator differential equations and applications to electrodynamics,” Math. Methods Appl. Sci., 23, 1–15 (2000); https://doi.org/10.1002/(SICI)1099-1476(20000110)23:1<1::AID-MMA100>3.0.CO;2-5.

  24. V. L. Makarov and N. V. Maiko, “Weighted estimated accuracy of the method of Cayley transform for abstract boundary-value problems in Banach spaces,” Dop. Nats. Akad. Nauk Ukr., No. 5, 3–9 (2020); https://doi.org/10.15407/dopovidi2020.05.003.

  25. V. L. Makarov and N. V. Mayko, “Weighted estimates of the Cayley transform method for boundary value problems in a Banach space,” Numer. Funct. Anal. Optim., 42, 211–233 (2021); https://doi.org/10.1080/01630563.2020.1871010.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Vlasenko.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 2, pp. 164–177, February, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i2.6895.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasenko, L.A., Rutkas, A.G. & Chikrii, A.O. Functional-Differential Games with Nonatomic Difference Operator. Ukr Math J 74, 186–202 (2022). https://doi.org/10.1007/s11253-022-02057-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02057-7

Navigation