Skip to main content
Log in

Asymptotic Stabilization of a Flexible Beam with Attached Mass

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a mathematical model of a simply supported Euler–Bernoulli beam with an attached springmass system. The model is controlled by distributed piezo-actuators and a lumped force. We address the issue of asymptotic behavior of the solutions of this system driven by a linear feedback law. The precompactness of trajectories is established for the operator formulation of the closed-loop dynamics. Sufficient conditions for the strong asymptotic stability of the trivial equilibrium are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Coron, Control and Nonlinearity, American Mathematical Society, Providence, RI (2007).

    MATH  Google Scholar 

  2. R. Curtain and H. Zwart, Introduction to Infinite-Dimensional Systems Theory. A State-Space Approach, Springer, New York (2020).

  3. R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures, Springer-Verlag, Berlin (2006).

    Book  Google Scholar 

  4. C. Dullinger, A. Schirrer, and M. Kozek, “Advanced control education: optimal & robust MIMO control of a flexible beam setup,” IFAC Proc. Vol., 47(3), 9019–9025 (2014).

    Google Scholar 

  5. J. Kalosha, A. Zuyev, and P. Benner, “On the eigenvalue distribution for a beam with attached masses,” Stabilization of Distributed Parameter Systems: Design Methods and Applications, Springer International Publishing (2021), p. 43–56.

  6. V. Komkov, Optimal Control Theory for Thin Plates, Springer, Berlin, Heidelberg (1972).

    Book  Google Scholar 

  7. V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York (2005).

    Book  Google Scholar 

  8. W. Krabs, On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes, Springer-Verlag, Berlin (1992).

    Book  Google Scholar 

  9. A. Lamei and M. Hayatdavoodi, “On motion analysis and elastic response of floating offshore wind turbines,” J. Ocean Eng. Mar. Energy, 6, No. 1, 71–90 (2020).

    Article  Google Scholar 

  10. J. P. LaSalle, “Stability theory and invariance principles,” Dynamical systems (Proc. Internat. Symp., Brown Univ., Providence, RI, 1974), Vol. I, Academic Press, New York (1976), p. 211–222.

  11. Y. Le Gorrec, H. Zwart, and H. Ramirez, “Asymptotic stability of an Euler–Bernoulli beam coupled to nonlinear spring-damper systems,” IFAC-PapersOnLine, 50(1), 5580–5585 (2017).

  12. M. Liao, G. Wang, Z. Gao, Y. Zhao, and R. Li, “Mathematical modelling and dynamic analysis of an offshore drilling riser,” Shock and Vibration, 2020 (2020).

  13. G. Lumer and R. S. Phillips, “Dissipative operators in a Banach space,” Pacific J. Math., 11, No. 2, 679–698 (1961).

    Article  MathSciNet  Google Scholar 

  14. Z.-H. Luo, B.-Z. Guo, and Ö. Morgül, Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer-Verlag London, London (1999).

    Book  Google Scholar 

  15. L. U. Odhner and A. M. Dollar, “The smooth curvature model: an efficient representation of Euler–Bernoulli flexures as robot joints,” IEEE Trans. Robot., 28, No. 4, 761–772 (2012).

  16. J. Oostveen, Strongly Stabilizable Distributed Parameter Systems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000).

    MATH  Google Scholar 

  17. A. Pazy, “Semigroups of linear operators and applications to partial differential equations,” Appl. Math. Sci., 44 (1983).

  18. D. L. Russell, “Nonharmonic Fourier series in the control theory of distributed parameter systems,” J. Math. Anal. Appl., 18, No. 3, 542–560 (1967).

    Article  MathSciNet  Google Scholar 

  19. M. A. Shubov and L. P. Kindrat, “Spectral analysis of the Euler–Bernoulli beam model with fully nonconservative feedback matrix,” Math. Methods Appl. Sci., 41, No. 12, 4691–4713 (2018).

  20. M. A. Shubov and L. P. Kindrat, “Asymptotics of the eigenmodes and stability of an elastic structure with general feedback matrix,” IMA J. Appl. Math., 84, No. 5, 873–911 (2019).

    Article  MathSciNet  Google Scholar 

  21. M. Shubov and V. Shubov, “Stability of a flexible structure with destabilizing boundary conditions,” Proc. A, 472, No. 2191, 20160109 (2016).

  22. G. Sklyar and A. Zuyev, Stabilization of Distributed Parameter Systems: Design Methods and Applications, Springer International Publishing (2021).

    Book  Google Scholar 

  23. V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  24. A. Walsh and J. R. Forbes, “Modeling and control of flexible telescoping manipulators,” IEEE Trans. Robot., 31, No. 4, 936–947 (2015).

    Article  Google Scholar 

  25. A. L. Zuev, “Partial asymptotic stability of abstract differential equations,” Ukr. Mat. Zh., 58, No. 5, 629–637 (2006); English translation: Ukr. Math. J., 58, No. 5, 709–717 (2006).

  26. A. L. Zuyev and J. I. Kucher, “Stabilization of a flexible beam model with distributed and lumped controls,” Dynam. Syst., 3(31), No. 1-2, 25–35 (2013).

  27. A. Zuyev and O. Sawodny, “Stabilization of a flexible manipulator model with passive joints,” IFAC Proc. Vol., 38(1), 784–789 (2005).

    Google Scholar 

  28. A. Zuyev and O. Sawodny, “Stabilization and observability of a rotating Timoshenko beam model,” Math. Probl. Eng., 2007, 1–19 (2007).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Zuyev.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 10, pp. 1330–1341, October, 2021. Ukrainian DOI: https://doi.org/10.37863/umzh.v73i10.6750.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalosha, J.I., Zuyev, A.L. Asymptotic Stabilization of a Flexible Beam with Attached Mass. Ukr Math J 73, 1537–1550 (2022). https://doi.org/10.1007/s11253-022-02012-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-022-02012-6

Navigation