Skip to main content
Log in

Autonomous Nonlinear Boundary-Value Problems for the Lyapunov Equation in the Hilbert Space

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study boundary-value problems for the Lyapunov equation in the Hilbert space in the case where the corresponding problem is defined on an interval that depends on a parameter. We obtain necessary and sufficient conditions for the existence of generalized solutions of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dragicevic and C. Preda, “Lyapunov theorems for exponential dichotomies in Hilbert spaces,” Int. J. Math., 27, No. 4, Article 1650033 (2016).

  2. Vu Ngoc Phat and Tran Tin Kiet, “On the Lyapunov equation in Banach spaces and applications to control problems,” Int. J. Math. Math. Sci., 29, No. 3, 155–166 (2000).

    Article  MathSciNet  Google Scholar 

  3. C. Preda and P. Preda, “Lyapunov operator inequalities for exponential stability of Banach space semigroups of operators,” Appl. Math. Lett., 25, 401–403 (2012).

    Article  MathSciNet  Google Scholar 

  4. M. Gil’, “Solution estimates for the discrete Lyapunov equation in a Hilbert space and applications to difference equations,” Axioms, 8, No. 1 (2019), 22 p.

  5. L. Jodar, “An algorithm for solving generalized algebraic Lyapunov equations in Hilbert space, applications to boundary value problems,” Proc. Edinburgh Math. Soc., 31, 99–105 (1988).

    Article  MathSciNet  Google Scholar 

  6. Y. Latushkin and S. Montgomery-Smith, “Lyapunov theorems for Banach spaces,” Bull. Amer. Math. Soc., 31, No. 1, 44–49 (1994).

    Article  MathSciNet  Google Scholar 

  7. P. Gahinet, M. Sorine, A. J. Laub, and C. Kenney, “Stability margins and Lyapunov equations for linear operators in Hilbert space,” in: Proc. 29th Conf. Decision and Control (1990), pp. 2638–2639.

  8. K. M. Przyluski, “The Lyapunov equation and the problem of stability for linear bounded discrete-time systems in Hilbert space,” Appl. Math. Optim., 6, 97–112 (1980).

    Article  MathSciNet  Google Scholar 

  9. R. P. Ivanov and I. L. Raykov, “Parametric Lyapunov function method for solving nonlinear systems in Hilbert spaces,” Numer. Funct. Anal. Optim., 17, No 2, 893–901 (1996).

    Article  MathSciNet  Google Scholar 

  10. A. Polyakov, “On homogeneous Lyapunov function theorem for evolution equations,” in: IFAC 2020 — International Federation on Automatic Control, 21st World Congress (July 2020, Berlin / Virtual, Germany).

  11. A. Pazy, “On the applicability of Lyapunov’s theorem in Hilbert space,” SIAM J. Math. Anal., 3, No. 2, 291–294 (1972).

    Article  MathSciNet  Google Scholar 

  12. M. Gil’, “Stability of linear equations with differentiable operators in a Hilbert space,” IMA J. Math. Control Inform., 1–8 (2018).

  13. S. M. Chuiko, “On the solution of matrix Lyapunov equations,” Visn. Kharkiv. Nats. Univ., Ser. Mat. Prykl. Mat. Mekh., No. 1120, 85–94 (2014).

  14. S. G. Krein, Linear Equations in Banach Spaces [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  15. A. A. Boichuk and A. A. Pokutnyi, “Perturbation theory of operator equations in the Fréchet and Hilbert spaces,” Ukr. Mat. Zh., 67, No. 9, 1181–1188 (2015); English translation: Ukr. Math. J., 67, No. 9, 1327–1335 (2016).

  16. E. V. Panasenko and O. O. Pokutnyi, “Bifurcation condition for the solutions of the Lyapunov equation in a Hilbert space,” Nelin. Kolyv., 20, No. 3, 373–390 (2017); English translation: J. Math. Sci., 236, No. 3, 313–332 (2019).

  17. E. V. Panasenko and O. O. Pokutnyi, “Nonlinear boundary-value problems for the Lyapunov equation in the space Lp,Nelin. Kolyv., 21, No. 4, 523–536 (2017); English translation: J. Math. Sci., 246, No. 3, 394–409 (2020).

  18. V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  19. E. Deutch, “Semi-inverses, reflexive semi-inverses, and pseudoinverses of an arbitrary linear transformation,” Linear Algebra Appl., 4, 313–322 (1971).

    Article  MathSciNet  Google Scholar 

  20. A. A. Boichuk, V. F. Zhuravlev, and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1995).

  21. A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, De Gruyter, Berlin (2016).

    Book  Google Scholar 

  22. A. N. Tikhonov and V. Ya. Arsenin, Methods for the Solution of Ill-Posed Problems [in Russian], Nauka, Moscow (1979).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Pokutnyi.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 7, pp. 867–878, July, 2021. Ukrainian DOI: 10.37863/umzh.v73i7.6691.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bihun, D.S., Pokutnyi, O.O. & Panasenko, E.V. Autonomous Nonlinear Boundary-Value Problems for the Lyapunov Equation in the Hilbert Space. Ukr Math J 73, 1009–1022 (2021). https://doi.org/10.1007/s11253-021-01973-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01973-4

Navigation