Skip to main content
Log in

A Study of a More General Class of Nonlocal Integro-Multipoint Boundary-Value Problems for Fractional Integrodifferential Inclusions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We develop the existence theory for a more general class of nonlocal integro-multipoint boundary-value problems for Caputo-type fractional integrodifferential inclusions. Our results include the convex and nonconvex cases for the given problem and rely on standard fixed-point theorems for multivalued maps. The obtained results are illustrated with the help of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in: Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), CISM Courses Lect., 378, Springer, Vienna (1997), pp. 291–348.

  2. W. Glockle and T. Nonnenmacher, “A fractional calculus approach to self-similar protein dynamics,” Biophys. J., 68, 46–53 (1995).

    Article  Google Scholar 

  3. G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford Univ. Press, Oxford (2005).

  4. R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers (2006).

  5. Z. M. Ge and C. Y. Ou, “Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal,” Chaos, Solitons Fractals, 35, 705–717 (2008).

    Article  Google Scholar 

  6. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticy. An Introduction to Mathematical Models, Imperial College Press, London (2010).

  7. M. Javidi and B. Ahmad, “Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system,” Ecol. Model., 318, 8–18 (2015).

    Article  Google Scholar 

  8. N. Nyamoradi, M. Javidi, and B. Ahmad, “Dynamics of SVEIS epidemic model with distinct incidence,” Int. J. Biomath., 8, No. 6, Article 1550076 (2015).

  9. A. Carvalho and C. M. A. Pinto, “A delay fractional order model for the co-infection of malaria and HIV/AIDS,” Int. J. Dyn. Control, 5, 168–186 (2017).

    Article  MathSciNet  Google Scholar 

  10. H. A. Fallahgoul, S. M. Focardi, and F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application, Elsevier/Academic Press, London (2017).

  11. Z. B. Bai and W. Sun, “Existence and multiplicity of positive solutions for singular fractional boundary-value problems,” Comput. Math. Appl., 63, 1369–1381 (2012).

    Article  MathSciNet  Google Scholar 

  12. B. Ahmad, S. K. Ntouyas, and A. Alsaedi, “A study of nonlinear fractional differential equations of arbitrary order with Riemann–Liouville type multistrip boundary conditions,” Math. Probl. Eng., 2013, Article ID 320415 (2013).

  13. L. Zhang, G. Wang, B. Ahmad, and R. P. Agarwal, “Nonlinear fractional integro-differential equations on unbounded domains in a Banach space,” J. Comput. Appl. Math., 249, 51–56 (2013).

    Article  MathSciNet  Google Scholar 

  14. B. Ahmad and S. K. Ntouyas, “Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions,” Electron. J. Qual. Theory Differ. Equat., 2013, No. 20 (2013).

  15. J. R. Graef, L. Kong, and M. Wang, “Existence and uniqueness of solutions for a fractional boundary-value problem on a graph,” Fract. Calc. Appl. Anal., 17, 499–510 (2014).

    Article  MathSciNet  Google Scholar 

  16. X. Liu and Z. Liu, “Existence results for fractional semilinear differential inclusions in Banach spaces,” J. Appl. Math. Comput., 42, 171–182 (2013).

    Article  MathSciNet  Google Scholar 

  17. H. Ergören, “Impulsive functional differential equations of fractional order with variable moments,” Ukr. Math. Zh., 68, No. 9, 1169–1179 (2016); English translation: Ukr. Math. J., 68, No. 9, 1340–1352 (2017).

  18. B. Ahmad and R. Luca, “Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions,” Appl. Math. Comput., 339, 516–534 (2018).

    MathSciNet  MATH  Google Scholar 

  19. B. Ahmad, S. K. Ntouyas, A. Alsaedi, W. Shammakh, and R. P. Agarwal, “Existence theory for fractional differential equations with non-separated type nonlocal multi-point and multistrip boundary conditions,” Adv. Difference Equat., No. 89 (2018).

  20. M. Monteiro and D. P. Manuel, “Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction,” Progress in Nonlinear Differential Equations and Their Applications, vol. 9, Birkhäuser Verlag, Basel (1993).

  21. M. Kisielewicz, “Stochastic differential inclusions and applications,” Springer Optim. Appl., vol. 80, Springer, New York (2013).

  22. S. Adly, T. Haddad, and L. Thibault, “Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities,” Math. Program., 148, No. 1-2, Ser. B, 5–47 (2014).

  23. P. Richard, M. Nicodemi, R. Delannay, P. Ribiere, and D. Bideau, “Slow relaxation and compaction of granular system,” Nature Mater., 4, 121–128 (2005).

    Article  Google Scholar 

  24. J. C. Quezada Guajardo, L. Sagnol, and C. Chazallon, “Shear test on viscoelastic granular material using contact dynamics simulations,” EPJ Web Conf., 140, Article 08009 (2017).

  25. J. Bastien, “Study of a driven and braked wheel using maximal monotone differential inclusions: applications to the nonlinear dynamics of wheeled vehicles,” Arch. Appl. Mech., 84, 851–880 (2014).

    Article  Google Scholar 

  26. F. L. Pereira, J. Borges de Sousa, and A. Coimbra de Matos, “An algorithm for optimal control problems based on differential inclusions,” Proc. 34th Conf. Decision and Control, New Orleans, LA (December 1995).

  27. M. Korda, D. Henrion, and C. N. Jones, “Convex computation of the maximum controlled invariant set for polynomial control systems,” SIAM J. Control Optim., 52, 2944–2969 (2014).

    Article  MathSciNet  Google Scholar 

  28. M.-F. Danca, “Synchronization of piecewise continuous systems of fractional order,” Nonlin. Dynam., 78, 2065–2084 (2014).

    Article  MathSciNet  Google Scholar 

  29. K. Deimling, Multivalued Differential Equations, de Gruyter, Berlin–New-York (1992).

  30. A. Lasota and Z. Opial, “An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations,” Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 13, 781–786 (1965).

    MathSciNet  MATH  Google Scholar 

  31. A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York (2005).

  32. H. Covitz and S. B. Nadler (Jr.), “Multivalued contraction mappings in generalized metric spaces),” Israel J. Math., 8, 5–11 (1970).

  33. C. Castaing and M. Valadier, “Convex analysis and measurable multifunctions,” Lect. Notes Math., 580, Springer-Verlag, Berlin, etc. (1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ahmad.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 6, pp. 763–779, June, 2021. Ukrainian DOI: 10.37863/umzh.v73i6.388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, B., Ntouyas, S.K. & Alsaedi, A. A Study of a More General Class of Nonlocal Integro-Multipoint Boundary-Value Problems for Fractional Integrodifferential Inclusions. Ukr Math J 73, 888–907 (2021). https://doi.org/10.1007/s11253-021-01966-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01966-3

Navigation