Skip to main content

Advertisement

Log in

Asymptotic Behavior of a Class of Perturbed Differential Equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider the problem of stability of nonlinear differential equations with perturbations. Sufficient conditions for global uniform asymptotic stability in terms of Lyapunov-like functions and integral inequalities are obtained. The asymptotic behavior is studied in a sense that the trajectories converge to a small ball centered at the origin. Furthermore, an illustrative example is given in the plane to verify the efficiency of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Aeyels and J. Peuteman, “A new asymptotic stability criterion for nonlinear time-variant differential equations,” IEEE Trans. Automat. Control, 43, No. 7, 968–971 (1998).

    Article  MathSciNet  Google Scholar 

  2. N. S. Bay and V. N. Phat, “Stability of nonlinear difference time-varying systems with delays,” Vietnam J. Math., 4, 129–136 (1999).

    Google Scholar 

  3. A. Ben Abdallah, I. Ellouze, and M. A. Hammami, “Practical stability of nonlinear time-varying cascade systems,” J. Dyn. Control Syst., 15, No. 1, 45–62 (2009).

    Article  MathSciNet  Google Scholar 

  4. A. Ben Abdallah, M. Dlala, and M. A. Hammami, “A new Lyapunov function for stability of time-varying nonlinear perturbed systems,” Systems Control Lett., 56, No. 3, 179–187 (2007).

    Article  MathSciNet  Google Scholar 

  5. A. Ben Makhlouf, “Stability with respect to part of the variables of nonlinear Caputo fractional differential equations,” Math. Comm., 23, No. 1, 119–126 (2018).

    MathSciNet  MATH  Google Scholar 

  6. A. Ben Makhlouf and M. A. Hammami, “A nonlinear inequality and application to global asymptotic stability of perturbed systems,” Math. Methods Appl. Sci., 38, No. 12, 2496–2505 (2015).

    Article  MathSciNet  Google Scholar 

  7. M. Corless and G. Leitmann, “Controller design for uncertain systems via Lyapunov functions,” Proc. 1988 Amer. Control Conf., Atlanta, Georgia (1988).

  8. M. Corless, “Guaranteed rates of exponential convergence for uncertain systems,” J. Optim. Theory Appl., 64, No. 3, 481–494 (1990).

    Article  MathSciNet  Google Scholar 

  9. F. Garofalo and G. Leitmann, “Guaranteeing ultimate boundedness and exponential rate of convergence for a class of nominally linear uncertain systems,” J. Dyn. Syst., Meas. Control, 111, 584–588 (1989).

    Article  Google Scholar 

  10. B. Ghanmi, N. Hadj Taieb, and M. A. Hammami, “Growth conditions for exponential stability of time-varying perturbed systems,” Internat. J. Control, 86, No. 6, 1086–1097 (2013).

    Article  MathSciNet  Google Scholar 

  11. W. Hahn, Stability of Motion, Springer, New York (1967).

    Book  Google Scholar 

  12. Z. HajSalem, M. A. Hammami, and M. Mabrouk, “On the global uniform asymptotic stability of time-varying dynamical systems,” Stud. Univ. Babe¸s-Bolyai Math., 59, No. 1, 57–67 (2014).

    MathSciNet  MATH  Google Scholar 

  13. M. A. Hammami, “On the stability of nonlinear control systems with uncertainty,” J. Dyn. Control Syst., 7, No. 2, 171–179 (2001).

    Article  MathSciNet  Google Scholar 

  14. M. Hammi and M. A. Hammami, “Nonlinear integral inequalities and applications to asymptotic stability,” IMA J. Math. Control Inform., 32, No. 4, 717–735 (2015).

    MathSciNet  MATH  Google Scholar 

  15. W. G. Kelley and A. C. Peterson, The Theory of Differential Equations. Classical and Qualitative, Springer (2010).

    Book  Google Scholar 

  16. H. Khalil, Nonlinear Systems, Prentice Hall (2002).

    MATH  Google Scholar 

  17. A. M. Lyapunov, “The general problem of the stability of motion,” Internat. J. Control, 55, No. 3, 521–790 (1992).

    Article  MathSciNet  Google Scholar 

  18. X. Liao, L. Wang, and P. Yu, “Stability of dynamical systems,” Monograph Series on Nonlinear Science and Complexity, 5, Elsevier B. V., Amsterdam (2007).

  19. T. Yoshizawa, “Stability theory by Lyapunov’s second method,” The Mathematical Society of Japan, Tokyo (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hammami.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 5, pp. 627–639, May, 2021. Ukrainian DOI: 10.37863/umzh.v73i5.232.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorgham, A., Hammi, M. & Hammami, M.A. Asymptotic Behavior of a Class of Perturbed Differential Equations. Ukr Math J 73, 731–745 (2021). https://doi.org/10.1007/s11253-021-01956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01956-5

Navigation