Skip to main content
Log in

Fractional Diffusion Equation Degenerating in the Initial Hyperplane

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a fractional extension of the parabolic equation degenerating in the initial hyperplane. For this equation, we construct and investigate the fundamental solution of the Cauchy problem and find the solution of the inhomogeneous equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bologna, B. J. West, and P. Grigolini, “Renewal and memory origin of anomalous diffusion: a discussion of their joint action,” Phys. Rev. E, 88, Article 062106 (2013).

    Article  Google Scholar 

  2. M. Bologna, A. Svenkeson, B. J. West, and P. Grigolini, “Diffusion in heterogeneous media: an iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients,” J. Comput. Phys., 293, 297–311 (2015).

    Article  MathSciNet  Google Scholar 

  3. K. Kim and K. Lee, “On the heat diffusion starting with degeneracy,” J. Different. Equat., 262, 2722–2744 (2017).

    Article  MathSciNet  Google Scholar 

  4. S. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, Birkhäuser, Basel (2004).

  5. A. Friedman and Z. Schuss, “Degenerate evolution equation in Hilbert space,” Trans. Amer. Math. Soc., 161, 401–427 (1971).

    Article  MathSciNet  Google Scholar 

  6. M. L. Gorbachuk and N. I. Pivtorak, “Solutions of evolution equations of parabolic type with degeneration,” Different. Equat., 21, 892–897 (1985).

    MathSciNet  MATH  Google Scholar 

  7. M. G. Hahn, K. Kobayashi, and S. Umarov, “Fokker–Planck–Kolmogorov equations associated with time-changed fractional Brownian motion,” Proc. Amer. Math. Soc., 139, 691–705 (2011).

    Article  MathSciNet  Google Scholar 

  8. E. G. Bazhlekova, “Subordination principle for fractional evolution equations,” Fract. Calc. Appl. Anal., 3, 213–230 (2000).

    MathSciNet  MATH  Google Scholar 

  9. R. Gorenflo and F. Mainardi, “On the fractional Poisson process and the discretized stable subordinator,” Axioms, 4, 321–344 (2015).

    Article  Google Scholar 

  10. M. M. Meerschaert and H.-P. Scheffler, “Triangular array limits for continuous time random walks,” Stochast. Proc. Appl., 118, 1606–1633 (2008).

    Article  MathSciNet  Google Scholar 

  11. M. M. Meerschaert and P. Straka, “Inverse stable subordinators,” Math. Model. Nat. Phenom., 8, 1–16 (2013).

    Article  MathSciNet  Google Scholar 

  12. A. N. Kochubei, “Fractional-parabolic systems,” Potential Anal., 37, 1–30 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ponomarenko.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal,Vol. 73, No. 3, pp. 370–380, March, 2021. Ukrainian DOI: 10.37863/umzh.v73i3.6320.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarenko, A.M. Fractional Diffusion Equation Degenerating in the Initial Hyperplane. Ukr Math J 73, 433–446 (2021). https://doi.org/10.1007/s11253-021-01934-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01934-x

Navigation