Skip to main content
Log in

Almost Everywhere Convergence of the Cesàro Means of Two Variablewalsh–Fourier Series with Variable Parameters

  • Published:
Ukrainian Mathematical Journal Aims and scope

It is shown that the maximal operator of some (C, βn)-means of cubical partial sums of two variable Walsh–Fourier series of integrable functions is of weak type (L1,L1). Moreover, the (C, βn)-means \( {\sigma}_{2^n}^{\beta_n}f \) of the function fL1 converge a.e. to f for fL1(I2), where I is the Walsh group for some sequences 1 > βn ↘ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Akhobadze, “On the convergence of generalized Cesàro means of trigonometric Fourier series. I,” Acta Math. Hungar., 115, No. 1-2, 59–78 (2007).

    Article  MathSciNet  Google Scholar 

  2. T. Akhobadze, “On the generalized Cesàro means of trigonometric Fourier series,” Bull. TICMI, 18, No. 1, 75–84 (2014).

    MathSciNet  MATH  Google Scholar 

  3. A. Abu Joudeh and G. Gát, “Almost everywhere convergence of Cesàro means with varying parameters of Walsh–Fourier series,” Miskolc Math. Notes, 19, No. 1, 303–317 (2018).

    Article  MathSciNet  Google Scholar 

  4. M. I. Dyachenko, “On (C, α)-summability of multiple trigonometric Fourier series,” Soobshch. Akad. Nauk Gruz. SSR, 131, No. 2, 261–263 (1988).

    MathSciNet  Google Scholar 

  5. G. Gát, “Convergence of Marcinkiewicz means of integrable functions with respect to two-dimensional Vilenkin systems,” Georgian Math. J., 11, No. 3, 467–478 (2004).

    Article  MathSciNet  Google Scholar 

  6. G. Gát, “On (C, 1) summability for Vilenkin-like systems,” Studia Math., 144, No. 2, 101–120 (2001).

    Article  MathSciNet  Google Scholar 

  7. U. Goginava, “Marcinkiewicz–Fejér means of d-dimensionalWalsh–Fourier series,” J. Math. Anal. Appl., 307, No. 1, 206–218 (2005).

    Article  MathSciNet  Google Scholar 

  8. U. Goginava, “Almost everywhere convergence of (C, α)-means of cubical partial sums of d-dimensional Walsh–Fourier series,” J. Approx. Theory, 141, No. 1, 8–28 (2006).

    Article  MathSciNet  Google Scholar 

  9. J. Marcinkiewicz, “Sur une nouvelle condition pour la convergence presque partout des séries de Fourier,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8, No. 3-4, 239–240 (1939).

  10. F. Schipp, W. R. Wade, P. Simon, and J. Pál, Walsh Series: an Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, New York (1990).

  11. F. Weisz, “Convergence of double Walsh–Fourier series and Hardy spaces,” Approx. Theory Appl., 17, No. 2, 32–44 (2001).

    MathSciNet  MATH  Google Scholar 

  12. L. V. Zhizhiashvili, “A generalization of a theorem of Marcinkiewicz.,” Izv. Akad. Nauk SSSR Ser. Mat., 32, No. 5, 1112–1122 (1968).

    MathSciNet  Google Scholar 

  13. A. Zygmund, Trigonometric Series, Univ. Press, Cambridge (1959).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Abu Joudeh.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 3, pp. 291–307, March, 2021. Ukrainian DOI: 10.37863/umzh.v73i3.196.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joudeh, A.A.A., Gát, G. Almost Everywhere Convergence of the Cesàro Means of Two Variablewalsh–Fourier Series with Variable Parameters. Ukr Math J 73, 337–358 (2021). https://doi.org/10.1007/s11253-021-01928-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01928-9

Navigation