Skip to main content

Some Generalizations of the Shadow Problem in the Lobachevsky Space

We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.

This is a preview of subscription content, access via your institution.

References

  1. G. Khudaiberganov,On the Homogeneous Polynomially Convex Hull of a Union of Balls[in Russian], Deposited at VINITI, 21, 1772–1785 (1982).

    Google Scholar 

  2. Yu. B. Zelinskii, I. Yu. Vygovskaya, and H. K. Dakhil, “Problem of shadow and related problems,” Proc. Internat. Geom. Center, 9, No. 3-4, 50–58 (2016).

    Google Scholar 

  3. Yu. B. Zelinskii, I. Yu. Vygovskaya, and M. V. Stefanchuk, “Generalized convex sets and the problem of shadow,” Ukr. Mat. Zh., 67, No. 12, 1658–1666 (2015); English translation: Ukr. Math. J., 67, No. 12, 1874–1883 (2016).

  4. Yu. B. Zelins’kyi and M. V. Stefanchuk, “Generalization of the shadow problem,” Ukr. Mat. Zh., 68, No. 6, 757–762 (2016); English translation: Ukr. Math. J., 68, No. 6, 862–867 (2016).

  5. Y. B. Zelinskii, “Generalized convex envelopes of sets and the problem of shadow,” J. Math. Sci., 211, No. 5, 710–717 (2015).

    MathSciNet  Article  Google Scholar 

  6. Y. B. Zelinskii, “Problem of shadow (complex case),” Adv. Math.: Sci. J., 5, No. 1, 1–5 (2016).

  7. Y. B. Zelinskii, “The problem of the shadows,” Bull. Soc. Sci. Lett. L´od´z, S´er. Rech. D´eform., 66, No. 1, 37–42 (2016).

  8. Yu. B. Zelinskii, “Shadow problem for a family of sets,” in: Proc. of the Institute of Mathematics, National Academy of Sciences of Ukraine, 12, No. 4, 197–204 (2015).

  9. Yu. B. Zelinskii, I. Yu. Vygovskaya, and M. V. Stefanchuk, “Problem of shadow,” Dop. Nats. Akad. Nauk Ukr., No. 5, 15–19 (2015).

    Article  Google Scholar 

  10. T. M. Osipchuk and M. V. Tkachuk, “The problem of shadow for domains in Euclidean spaces,” Ukr. Mat. Visn., 13, No. 4, 532–542 (2016). English translation: J. Math. Sci., 224, No. 4, 555–562 (2017)).

  11. M. V. Tkachuk and T. M. Osipchuk, “Problem of shadow for an ellipsoid of revolution,” in: Proc. of the Institute of Mathematics, National Academy of Sciences of Ukraine, 12, No. 3 (2015), pp. 243–250.

  12. Zh. Kaidasov and E. V. Shikin, “On the isometric immersion of a convex domain of the Lobachevsky plane containing two horodisks in E3,Mat. Zametki, 39, No. 4, 612–617 (1986).

    MathSciNet  Google Scholar 

  13. B. A. Rozenfel’d, Non-Euclidean Spaces [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  14. N. M. Nestorovich, Geometric Structures in the Lobachevskii Plane [in Russian], Gostekhteorizdat, Moscow (1951).

    Google Scholar 

  15. A.V. Kostin, “Problem of shadow in the Lobachevskii space,” Ukr. Mat. Zh., 70, No. 11, 1525–1532 (2018); English translation: Ukr. Math. J., 70, No. 11, 1758–1766 (2018).

  16. A.V. Kostin and I. K. Sabitov, “Smarandache theorem in hyperbolic geometry,” J. Math. Phys., Anal., Geom., 10, No. 2, 221–232 (2014).

  17. A.V. Kostin, “On the asymptotic lines on pseudospherical surfaces,” Vladikavkaz. Mat. Zh., 21, No. 1, 16–26 (2019).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Kostin.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 1, pp. 61–68, January, 2021. Ukrainian DOI: 10.37863/umzh.v73i1.2397.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kostin, A. Some Generalizations of the Shadow Problem in the Lobachevsky Space. Ukr Math J 73, 67–75 (2021). https://doi.org/10.1007/s11253-021-01908-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01908-z