Skip to main content
Log in

Ulam–Hyers Stability Analysis of a Three-Point Boundary-Value Problem for Fractional Differential Equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the problem of existence and uniqueness of the solution of a three-point boundary-value problem for a differential equation of fractional order. Further, we investigate various kinds of the Ulam stability, such as the Ulam–Hyers stability, the generalized Ulam–Hyers stability, the Ulam–Hyers–Rassias stability, and the generalized Ulam–Hyers–Rassias stability for the analyzed problem. We also present examples to explain our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ahmad and J. J. Nieto, “Existence of solutions for antiperiodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory,” Topol. Methods Nonlin. Anal., 35, 295–304 (2010).

    MATH  Google Scholar 

  2. B. Ahmad and S. Sivasundaram, “Existence results for nonlinear impulsive hybrid boundary-value problems involving fractional differential equations,” Nonlin. Anal. Hybrid Syst., 3, No. 3, 251–258 (2009).

    Article  MathSciNet  Google Scholar 

  3. M. Benchohra and D. Seba, “Impulsive fractional differential equations in Banach spaces,” Electron. J. Qual. Theory Differ. Equat., 8, 1–14 (2009).

    MathSciNet  MATH  Google Scholar 

  4. M. Benchohra and J. E. Lazreg, “Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions,” Rom. J. Math. Comput. Sci., 4, No. 1, 60–72 (2014).

    MathSciNet  MATH  Google Scholar 

  5. M. Benchohra, N. Hamidi, and J. Henderson, “Fractional differential equations with antiperiodic boundary conditions,” Numer. Funct. Anal. Optim., 34, No. 4, 404–414 (2013).

    Article  MathSciNet  Google Scholar 

  6. M. Benchohra and J. E. Lazreg, “Nonlinear fractional implicit differential equations,” Comm. Appl. Anal., 17, 471–482 (2013).

    MathSciNet  MATH  Google Scholar 

  7. M. Benchohra and J. E. Lazreg, “On Stability for Nonlinear Implicit Fractional Differential Equations,” Matematiche (Catania), 70, Fasc. II, 49–61 (2015).

  8. R. Caponetto, G. Dongola, L. Fortuna, and I. Petrás, “Fractional order systems: Modeling and control applications,” in: World Scientific Series in Nonlinear Science, World Sci., River Edge, NJ (2010), pp. 59–60.

  9. P. J. Torvik and R. L. Bagley, “On the appearance of fractional derivatives in the behavior of real materials,” J. Appl. Mech., 51, 294–298 (1984).

    Article  Google Scholar 

  10. K. B. Oldham, “Fractional differential equations in electrochemistry,” Adv. Eng. Softw., 41, Issue 1, 9–12 (2010).

    Article  Google Scholar 

  11. R. Hilfer, “Threefold introduction to fractional derivatives,” in: Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008), pp. 17–79.

  12. D. H. Hyers, “On the stability of the linear functional equation,” Proc. Natl. Acad. Sci. USA, 27, 222–224 (1941).

    Article  MathSciNet  Google Scholar 

  13. S. M. Jung, “On the Hyers–Ulam stability of functional equations that have the quadratic property,” J. Math. Appl., 222, 126–137 (1998).

    MathSciNet  MATH  Google Scholar 

  14. S. M. Jung, “Hyers–Ulam stability of linear differential equations of first order II,” Appl. Math. Lett., 19, 854–858 (2006).

    Article  MathSciNet  Google Scholar 

  15. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science, 204 (2006).

  16. A. A. Kilbas, O. I. Marichev, and S. G. Samko, Fractional Integrals and Derivatives (Theory and Applications), Gordon & Breach, Switzerland (1993).

  17. V. Lakshmikantham, S. Leea, and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Sci. Publ., Cambridge, UK (2009).

    Google Scholar 

  18. J. T. Machado, V. Kiryakova, and F. Mainardi, “Recent history of fractional calculus,” Comm. Nonlin. Sci. Numer. Simul. (2010).

  19. R. J. II. Marks and M.W. Hall, “Differintegral interpolation from a bandlimited signals samples,” IEEE Trans. Acoust., Speech Signal Process., 29, 872–877 (1981).

    Article  Google Scholar 

  20. K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).

    MATH  Google Scholar 

  21. M. Obloza, “Hyers stability of the linear differential equation,” Rocznik Nauk-Dydakt. Prace Mat., 13, 259–270 (1993).

    MathSciNet  MATH  Google Scholar 

  22. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).

    MATH  Google Scholar 

  23. M. Rehman and R. A. Khan, “Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations,” Appl. Math. Lett., 23, No. 9, 1038–1044 (2010).

    Article  MathSciNet  Google Scholar 

  24. I. A. Rus, “Ulam stabilities of ordinary differential equations in a Banach space,” Carpathian J. Math., 26, 103–107 (2010).

    MathSciNet  MATH  Google Scholar 

  25. Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proc. Amer. Math. Soc., 72, 297–300 (1978).

    Article  MathSciNet  Google Scholar 

  26. K. Shah and R. A. Khan, “Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory,” Numer. Funct. Anal. Optim., 37, No. 7, 887–899 (2016).

    Article  MathSciNet  Google Scholar 

  27. K. Shah, S. Zeb, and R. A. Khan, “Existence and uniqueness of solutions for fractional order m-points boundary value problems,” Fract. Differ. Calc., 5, No. 2, 171–181 (2015).

    Article  MathSciNet  Google Scholar 

  28. Y. Tian and Z. Bai, “Existence results for the three-point impulsive boundary value problem involving fractional differential equations,” Comput. Math. Appl., 8, 2601–2609 (2010).

    Article  MathSciNet  Google Scholar 

  29. S. M. Ulam, Problems in Modern Mathematics, John Wiley and Sons, New York, USA (1940).

    MATH  Google Scholar 

  30. S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York (1960).

    MATH  Google Scholar 

  31. J. R. Wang, Y. L. Yang, and W. Wei, “Nonlocal impulsive problems for fractional differential equations with time-varying generating operators in Banach spaces,” Opuscula Math., 30, No. 3, 361–381 (2010).

    Article  MathSciNet  Google Scholar 

  32. H. Ye, J. Gao, and Y. Ding, “A generalized Gronwall inequality and its application to a fractional differential equation,” J. Math. Anal. Appl., 328, 1075–1081 (2007).

    Article  MathSciNet  Google Scholar 

  33. A. Ali, K. Shah, F. Jarad, V. Gupta, and T. Abdeljawad, “Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations,” Adv. Difference Equat., 2019, No. 101 (2019).

  34. K. Shah, P. Kumam, and I. Ullah, “On Ulam stability and multiplicity results to a nonlinear coupled system with integral boundary conditions,” Mathematics, 7, No. 3, 223 (2019).

    Article  Google Scholar 

  35. T. Abdeljawad, F. Madjidi, F. Jarad, and N. Sene, “On dynamic systems in the frame of singular function dependent kernel fractional derivatives,” Mathematics, 7, 946 (2019).

    Article  Google Scholar 

  36. A. Ali, Ulam Type Stability Analysis of Implicit Impulsive Fractional Differential Equations, Phil. Dissertation, University of Malakand, Pakistan (2017).

    Google Scholar 

  37. S. Qureshi, N. A. Rangaig, and D. Baleanu, “New numerical aspects of Caputo–Fabrizio fractional derivative operator,” Mathematics, 7, 374 (2019).

    Article  Google Scholar 

  38. K. Shah, Multipoint Boundary Value Problems for Systems of Fractional Differential Equations: Existence Theory and Numerical Simulations, PhD Dissertation, University of Malakand, Pakistan (2016).

    Google Scholar 

  39. R. Hilfer and Y. Luchko, “Desiderata for fractional derivatives and integrals,” Mathematics, 7, 149 (2019).

    Article  Google Scholar 

  40. E. H. Mendes, G. H. Salgado, and L. A. Aguirre, “Numerical solution of Caputo fractional differential equations with infinity memory effect at initial condition,” Comm. Nonlin. Sci. Numer. Simul., 69, 237–247 (2019) .

    Article  MathSciNet  Google Scholar 

  41. A. Hamoud, K. Ghadle, M. I. Bani, and Giniswamy, “Existence and uniqueness theorems for fractional Volterra–Fredholm integrodifferential equations,” Int. J. Appl. Math., 31, No. 3, 333–348 (2018).

  42. Z. Ali, A. Zada, and K. Shah, “On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations,” Bull. Malays. Math. Sci. Soc., 42, No. 5, 2681–2699 (2018).

    Article  MathSciNet  Google Scholar 

  43. S. Abbas, M. Benchohra, J. R. Graef, and J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, de Gruyter, Berlin (2018).

    Book  Google Scholar 

  44. D. Baleanu1, S. Etemad, S. Pourrazi, and Sh. Rezapour, “On the new fractional hybrid boundary value problems with three-point integral hybrid conditions,” Adv. Difference Equat., 2019 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shah.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 2, pp. 147–160, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Shah, K. Ulam–Hyers Stability Analysis of a Three-Point Boundary-Value Problem for Fractional Differential Equations. Ukr Math J 72, 161–176 (2020). https://doi.org/10.1007/s11253-020-01773-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-020-01773-2

Navigation