Skip to main content
Log in

Isoptic Curves of Generalized Conic Sections in the Hyperbolic Plane

  • Published:
Ukrainian Mathematical Journal Aims and scope

We recall the notion of generalized hyperbolic angle between proper and improper straight lines, which is only available in Hungarian and Esperanto. Then we summarize the generalized hyperbolic conic sections. After the investigation of real conic sections and their isoptic curves in the hyperbolic plane H2, we consider the problem of isoptic curves of generalized conic sections in the extended hyperbolic plane. This problem is widely investigated in the Euclidean plane E2 but, in the hyperbolic and elliptic planes, there are few results. Furthermore, we determine and visualize the generalized isoptic curves to all hyperbolic conic sections. For our computations, we use the classical models based on the projective interpretation of hyperbolic geometry. In this way, the isoptic curves can be visualized in the Euclidean screen of a computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bӧhm and C. Im Hof, “Flächeninhalt verallgemeinerter hyperbolischer Dreiecke,” Geom. Dedicata, 42, 223–233 (1992).

    Article  MathSciNet  Google Scholar 

  2. W. Ciéslak, A. Miernowski, and W. Mozgawa, “Isoptics of a closed strictly convex curve,” Lect. Notes Math., 1481, 28–35 (1991).

    Article  MathSciNet  Google Scholar 

  3. W. Ciéslak, A. Miernowski, and W. Mozgawa, “Isoptics of a closed strictly convex curve. II,” Rend. Semin. Mat. Univ. Padova, 96, 37–49 (1996).

    MathSciNet  MATH  Google Scholar 

  4. J. L. Cooligde, The Elements of Non-Euclidean Geometry, Clarendon Press, Oxford (1909).

    Google Scholar 

  5. G. Csima and J. Szirmai, “Isoptic curves of the conic sections in the hyperbolic and elliptic plane,” Stud. Univ. Žilina. Math. Ser., 24, No. 1, 15–22 (2010).

    MathSciNet  MATH  Google Scholar 

  6. G. Csima and J. Szirmai, “Isoptic curves to parabolas in the hyperbolic plane,” Pollac Period., 7, 55–64 (2012).

    Article  Google Scholar 

  7. G. Csima and J. Szirmai, “Isoptic curves of conic sections in constant curvature geometries,” Math. Comm., 19, No. 2, 277–290 (2014).

    MathSciNet  MATH  Google Scholar 

  8. G. Csima and J. Szirmai, “On the isoptic hypersurfaces in the n-dimensional Euclidean space,” KoG, 17 (2013).

  9. I. Sh. Epshtein, “Complete classification of real conic sections in extended hyperbolic plane,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 234–243 (1960).

  10. K. Fladt, “Die allgemeine Kegelschnittgleichung in der ebenen hyperbolischen Geometrie,” J. Reine Angew. Math., 197, 121–139 (1957).

    MathSciNet  MATH  Google Scholar 

  11. K. Fladt, “Die allgemeine Kegelschnittgleichung in der ebenen hyperbolischen Geometrie. II,” J. Reine Angew. Math., 199, 203–207 (1958).

    MathSciNet  MATH  Google Scholar 

  12. G. Á . Horváth, “Hyperbolic plane geometry revisited,” J. Geom. (2014), DOI: https://doi.org/10.1007/s00022-014-0252-0 (2014).

  13. G. Holzmüller, Einführung in die Theorie der Isogonalen Verwandtschaft, Teubner, Leipzig; Berlin 82).

  14. V. F. Kagan, Foundations of Geometry, Gostekhteorizdat, Moscow; Leningrad (1956), Vol. 2.

  15. R. Kunkli, I. Papp, and M. Hoffmann, “Isoptics of Bezier curves,” Comput. Aided Geom. Design, 30, No. 1, 78–84 (2013).

    Article  MathSciNet  Google Scholar 

  16. Á . Kurusa, “Is a convex plane body determined by an isoptic?,” Beitr. Algebra Geom., 53, 281–294 (2012).

  17. H. Liebmann, “Die Kegelschnitte und die Planetenbewegung im Nichteuclidischen Raum,” Berichte Kӧnigl. Sächsischen Gesell. Wiss., Math. Phys. Klasse, 54, 393–423 (1902).

  18. G. Loria, Spezielle Algebraische und Traszendente Ebene Kurve, Teubner, Leipzig; Berlin (1911), Bd. 1, 2.

    Google Scholar 

  19. M. Michalska, “A sufficient condition for the convexity of the area of an isoptic curve of an oval,” Rend. Semin. Mat. Univ. Padova, 110, 161–169 (2003).

    MathSciNet  MATH  Google Scholar 

  20. A. Miernowski and W. Mozgawa, “On some geometric condition for convexity of isoptics,” Rend. Semin. Mat. Univ. Politec. Torino, 55, No. 2, 93–98 (1997).

    MathSciNet  MATH  Google Scholar 

  21. E. Molnár, “Kegelschnitte auf der metrischen Ebene,” Acta Math. Hungar., 31, No. 3-4, 317–343 (1978).

    Article  MathSciNet  Google Scholar 

  22. E. Molnár and J. Szirmai, “Symmetries in the 8 homogeneous 3-geometries, symmetry,” Symmetry: Cult. Sci., 21, No. 1-3, 87–117 (2010).

    MATH  Google Scholar 

  23. M. Michalska and W. Mozgawa, “𝛼-Isoptics of a triangle and their connection to 𝛼-isoptic of an oval,” Rend. Semin. Mat. Univ. Padova, 133, 159–172 (2015).

    Article  MathSciNet  Google Scholar 

  24. B. Odehnal, “Equioptic curves of conic section,” J. Geom. Graph., 14, No. 1, 29–43 (2010).

    MathSciNet  MATH  Google Scholar 

  25. B. A. Rosenfeld, Non-Euclidean Spaces, Gostekhteorizdat, Moscow (1955).

    Google Scholar 

  26. F. H. Siebeck, “Ü ber eine Gattung von Curven vierten Grades, welche mit den elliptischen Funktionen zusammenha¨ngen,” J. Reine Angew. Math., 57, 359–370 (1860); 59, 173–184 (1861).

  27. M. Skrzypiec, “A note on secantopics,” Beitr. Algebra Geom., 49, No. 1, 205–215 (2008).

    MathSciNet  MATH  Google Scholar 

  28. C. Taylor, “Note on a theory of orthoptic and isoptic loci,” Proc. Roy. Soc. Edinburgh. Sect. A, 38 (1884).

  29. C. Vӧrӧs, Analitikus B´olyai F´ele Geometria, Első kӧtet, Budapest (1909).

    Google Scholar 

  30. H. Wieleitener, Spezielle Ebene Kurven. Sammlung Schubert LVI, G¨oschen’sche Verlagshandlung, Leipzig (1908).

    Google Scholar 

  31. W. Wunderlich, “Kurven mit isoptischem Kreis,” Aequationes Math., 6, 71–81 (1971).

    Article  MathSciNet  Google Scholar 

  32. W. Wunderlich, “Kurven mit isoptischer Ellipse,” Monatsh. Math., 75, 346–362 (1971).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Csima or J. Szirmai.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 12, pp. 1684–1698, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csima, G., Szirmai, J. Isoptic Curves of Generalized Conic Sections in the Hyperbolic Plane. Ukr Math J 71, 1929–1944 (2020). https://doi.org/10.1007/s11253-020-01756-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-020-01756-3

Navigation