Skip to main content
Log in

Some Integrals Involving -Functions and Laguerre Polynomials

  • Published:
Ukrainian Mathematical Journal Aims and scope

Our aim is to establish some new integral formulas involving -functions associated with Laguerretype polynomials. We also show that the main results presented in the paper are general by demonstrating 18 integral formulas that involve simpler known functions, e.g., the generalized hypergeometric function pFq in a fairly systematic way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Agarwal, M. Chand, and S. Jain, “Certain integrals involving generalized Mittage–Leffler function,” Proc. Nat. Acad. Sci. India Sect. A., 359–371 (2015).

  2. Y. A. Brychkov, Handbook of Special Functions, Derivatives, Integrals, Series, and Other Formulas, CRC Press, Boca Raton, etc. (2008).

  3. A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, Halsted Press (John Wiley & Sons), New York, etc. (1978).

  4. A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications, Springer, New York (2010).

    Book  Google Scholar 

  5. T. R. Prabhakar and R. Suman, “Some results on the polynomials \( {L}_n^{\alpha, \beta } \) (x),” Rocky Mountain J. Math., 8, No. 4, 751–754 (1978).

    Article  MathSciNet  Google Scholar 

  6. E. D. Rainville, Special Functions, Macmillan, New York (1960) (Reprinted by Bronx; Chelsea Publ. Co., New York (1971)).

  7. V. P. Saxena, “Formal solution of certain new pair of dual integral equations involvingH-function,” Proc. Nat. Acad. Sci. India Sect. A, 52, 366–375 (1982).

    MathSciNet  MATH  Google Scholar 

  8. R. K. Saxena and T. K. Pogány, “Mathieu-type series for the -function occurring in Fokker–Planck equation,” Europ. J. Pure Appl. Math., 3, No. 6, 980–988 (2010).

  9. R. K. Saxena and T. K. Pogány, “On fractional integral formulae for -function,” Appl. Math. Comput., 218, 985–990 (2011).

  10. A. K. Shukla, J. C. Prajapati, and I. A. Salehbhai, “On a set of polynomials suggested by the family of Konhauser polynomial,” Int. J. Math. Anal. (N.S.), 3, No. 13-16, 637–643 (2009).

  11. J. Spanier and K. B. Oldham, An Altas of Functions, Hemisphere, Springer, Berlin (1987).

  12. H. M. Srivastava, “A multilinear generating function for the Konhauser sets of bi-orthogonal polynomials suggested by the Laguerre polynomials,” Pacif. J. Math., 117, No. 1, 183–191 (1985).

    Article  Google Scholar 

  13. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Amsterdam, etc. (2012).

  14. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood, Chichester (1984).

  15. N. Südland, B. Baumann, and T. F. Nannenmacher, “Open problem: who knows about the -function?,” Appl. Anal., 1, No. 4, 401–402 (1998).

  16. N. Südland, B. Baumann, and T. F. Nannenmacher, “Fractional driftless Fokker–Planck equation with power law diffusion coefficients,” Computer Algebra in Scientific Computing, Springer, Berlin, Heidelberg (2001), pp. 513–525.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Choi.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 9, pp. 1159–1175, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, P., Chand, M. & Choi, J. Some Integrals Involving -Functions and Laguerre Polynomials. Ukr Math J 71, 1321–1340 (2020). https://doi.org/10.1007/s11253-020-01718-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-020-01718-9

Navigation