Our aim is to establish some new integral formulas involving -functions associated with Laguerretype polynomials. We also show that the main results presented in the paper are general by demonstrating 18 integral formulas that involve simpler known functions, e.g., the generalized hypergeometric function pFq in a fairly systematic way.
Similar content being viewed by others
References
P. Agarwal, M. Chand, and S. Jain, “Certain integrals involving generalized Mittage–Leffler function,” Proc. Nat. Acad. Sci. India Sect. A., 359–371 (2015).
Y. A. Brychkov, Handbook of Special Functions, Derivatives, Integrals, Series, and Other Formulas, CRC Press, Boca Raton, etc. (2008).
A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, Halsted Press (John Wiley & Sons), New York, etc. (1978).
A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications, Springer, New York (2010).
T. R. Prabhakar and R. Suman, “Some results on the polynomials \( {L}_n^{\alpha, \beta } \) (x),” Rocky Mountain J. Math., 8, No. 4, 751–754 (1978).
E. D. Rainville, Special Functions, Macmillan, New York (1960) (Reprinted by Bronx; Chelsea Publ. Co., New York (1971)).
V. P. Saxena, “Formal solution of certain new pair of dual integral equations involvingH-function,” Proc. Nat. Acad. Sci. India Sect. A, 52, 366–375 (1982).
R. K. Saxena and T. K. Pogány, “Mathieu-type series for the -function occurring in Fokker–Planck equation,” Europ. J. Pure Appl. Math., 3, No. 6, 980–988 (2010).
R. K. Saxena and T. K. Pogány, “On fractional integral formulae for -function,” Appl. Math. Comput., 218, 985–990 (2011).
A. K. Shukla, J. C. Prajapati, and I. A. Salehbhai, “On a set of polynomials suggested by the family of Konhauser polynomial,” Int. J. Math. Anal. (N.S.), 3, No. 13-16, 637–643 (2009).
J. Spanier and K. B. Oldham, An Altas of Functions, Hemisphere, Springer, Berlin (1987).
H. M. Srivastava, “A multilinear generating function for the Konhauser sets of bi-orthogonal polynomials suggested by the Laguerre polynomials,” Pacif. J. Math., 117, No. 1, 183–191 (1985).
H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Amsterdam, etc. (2012).
H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood, Chichester (1984).
N. Südland, B. Baumann, and T. F. Nannenmacher, “Open problem: who knows about the -function?,” Appl. Anal., 1, No. 4, 401–402 (1998).
N. Südland, B. Baumann, and T. F. Nannenmacher, “Fractional driftless Fokker–Planck equation with power law diffusion coefficients,” Computer Algebra in Scientific Computing, Springer, Berlin, Heidelberg (2001), pp. 513–525.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 9, pp. 1159–1175, September, 2019.
Rights and permissions
About this article
Cite this article
Agarwal, P., Chand, M. & Choi, J. Some Integrals Involving -Functions and Laguerre Polynomials. Ukr Math J 71, 1321–1340 (2020). https://doi.org/10.1007/s11253-020-01718-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11253-020-01718-9