Skip to main content
Log in

Existence of Nonnegative Solutions for a Fractional Parabolic Equation in the Entire Space

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the existence of nonnegative solutions of a parabolic problem \( \frac{\partial u}{\partial t}=-{\left(-\Delta \right)}^{\frac{\alpha }{2}}u+\frac{c}{{\left|x\right|}^{\alpha }}u \) in d × (0, T). Here, 0 < α < min(2, d), \( {\left(-\Delta \right)}^{\frac{\alpha }{2}} \) is the fractional Laplacian on d and u0 ∈ L2(d).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Amor and T. Kenzizi, “The heat equation for the Dirichlet fractional Laplacian with negative potentials: Existence and blow-up of nonnegative solutions,” Acta Math. Sin. (Engl. Ser.), 33, 981–995 (2017).

    Article  MathSciNet  Google Scholar 

  2. K. Bogdan and T. Byczkowski, “Potential theory of Schrödinger operator on bounded Lipschitz domains,” Stud. Math., 133, No. 1, 53–92 (1999).

    Article  Google Scholar 

  3. Ali Beldi, Nedra Belhajrhouma, and Ali Ben Amor, “Pointwise estimates for the ground states of singular Dirichlet fractional Laplacian,” J. Phys. A, 46(44) (2013).

    Article  MathSciNet  Google Scholar 

  4. K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondraček, Potential analysis of stable processes and its extensions,” Lect. Notes Math., 1980 (2009).

  5. P. Baras and J. A. Goldstein, “The heat equation with a singular potential,” Trans. Amer. Math. Soc., 284, No. 1, 121–139 (1984).

    Article  MathSciNet  Google Scholar 

  6. P. Baras and J. A. Goldstein, “Remarks on the inverse square in quantum mechanics,” North-Holland Math. Stud., 92, 31–35 (1984).

    Article  MathSciNet  Google Scholar 

  7. R. Blumenthal and R. Getoor, “The asymptotic distribution of the eigenvalues for a class of Markov operators,” Pacific J. Math., 9, 399–408 (1959).

    Article  MathSciNet  Google Scholar 

  8. C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, New York (1975).

    Book  Google Scholar 

  9. C. S. Kubrusly, Spectral Theory of Operators on Hilbert Spaces, Springer Sci. + Business Media, LLC (2012).

    Book  Google Scholar 

  10. X. Cabré and Y. Martel, “Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier,” C. R. Math. Acad. Sci. Paris, 329, No. 11, 973–978 (1999).

    Article  MathSciNet  Google Scholar 

  11. T. Kato, Perturbation Theory for linear operators, Springer, Berlin (1995).

    Book  Google Scholar 

  12. J. A. Goldstein and Q. S. Zhang, “On a degenerate heat equation with a singular potential,” J. Funct. Anal., 186, 342–359 (2001).

    Article  MathSciNet  Google Scholar 

  13. K. Yosida, Functional Analysis, Springer, Berlin (1995).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kenzizi.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 8, pp. 1064–1072, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenzizi, T. Existence of Nonnegative Solutions for a Fractional Parabolic Equation in the Entire Space. Ukr Math J 71, 1214–1223 (2020). https://doi.org/10.1007/s11253-019-01708-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01708-6

Navigation