Skip to main content
Log in

Structural Stability of Matrix Pencils and Matrix Pairs Under Contragredient Equivalence

  • BRIEF COMMUNICATIONS
  • Published:
Ukrainian Mathematical Journal Aims and scope

A complex matrix pencil A−B is called structurally stable if there exists its neighborhood in which all pencils are strictly equivalent to this pencil. We describe all complex matrix pencils that are structurally stable. It is shown that there are no pairs (M,N) of m × n and n × m complex matrices (m, n ≥ 1) that are structurally stable under the contragredient equivalence (S1MR,R1NS) in which S and R are nondegenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. A. Andronov and L. S. Pontryagin, “Structurally stable systems,” Dol. Akad. Nauk SSSR, 14, No. 5, 247–250 (1937).

    Google Scholar 

  2. A. Dmytryshyn and F. M. Dopico, “Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade,” Linear Algebra Appl., 536 1–18 ((2018)).

    Article  MathSciNet  Google Scholar 

  3. N. M. Dobrovol’skaya and V. A. Ponomarev, “A pair of counter-operators,” Usp. Mat. Nauk, 20, No. 6, 81–86 (1965).

    MathSciNet  Google Scholar 

  4. A. Edelman, E. Elmroth, and B. Kågström, “A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm,” SIAM J. Matrix Anal. Appl., 20, 667–699 (1999).

    Article  MathSciNet  Google Scholar 

  5. P. Gabriel and A.V. Roiter, Representations of Finite-Dimensional Algebras, Encyclopedia of Mathematical Sciences, Vol. 73, Springer, Berlin (1999).

  6. M. I. García-Planas and M. D. Magret, “A generalized Sylvester equation: a criterion for structural stability of triples of matrices,” Linear Multilinear Algebra, 44, No. 2, 93–109 (1998).

  7. M. I. García-Planas, M. D. Magret, V. V. Sergeichuk, and N. A. Zharko, “Rigid systems of second-order linear differential equations,” Linear Algebra Appl., 414, 517–532 (2006).

    Article  MathSciNet  Google Scholar 

  8. M. I. García-Planas and V. V. Sergeichuk, “Simplest miniversal deformations of matrices, matrix pencils, and contragredient matrix pencils,” Linear Algebra Appl., 302/303, 45–61 (1999).

  9. M. I. García-Planas and V. V. Sergeichuk, “Generic families of matrix pencils and their bifurcation diagrams,” Linear Algebra Appl., 332/334, 165–179 (2001).

  10. R. A. Horn and D. I. Merino, “Contragredient equivalence: A canonical form and some applications,” Linear Algebra Appl., 214, 43–92 (1995).

    Article  MathSciNet  Google Scholar 

  11. L. Klimenko and V. V. Sergeichuk, “Block triangular miniversal deformations of matrices and matrix pencils,” in: Matrix Methods: Theory, Algorithms and Applications, World Scientific, Hackensack (2010), pp. 69–84.

    Chapter  Google Scholar 

  12. S. López de Medrano, “Topological aspects of matrix problems,” in: Representations of Algebras (Puebla, 1980) (1981), pp. 196–210.

  13. A. Pokrzywa, “On perturbations and the equivalence orbit of a matrix pencil,” Linear Algebra Appl., 82, 99–121 (1986).

    Article  MathSciNet  Google Scholar 

  14. J. W. Robbin, “Topological conjugacy and structural stability for discrete dynamical systems,” Bull. Amer. Math. Soc., 78, 923–952 (1972).

    Article  MathSciNet  Google Scholar 

  15. J. C. Willems, “Topological classification and structural stability of linear systems,” J. Different. Equat., 35, No. 3, 306–318 (1980).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Klymchuk.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 5, pp. 706–709, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Planas, M.I., Klymchuk, T. Structural Stability of Matrix Pencils and Matrix Pairs Under Contragredient Equivalence. Ukr Math J 71, 808–811 (2019). https://doi.org/10.1007/s11253-019-01676-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01676-x

Navigation